Open-Source Wearable Sensors for Behavioral Analysis of Sheep Undergoing Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals Experimental Design
2.2. Collar Instrumentation
2.3. Physiological and Behavioral Measurements
2.4. Statistical Analysis
3. Results
3.1. Physiological Measurements
3.2. Behavior Classification
4. Discussion
4.1. Physiological Responses
4.2. Effects of Temperature on Animal Behavior
4.3. Ability of an Open-Source Sensing System to Classify Behaviors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumgard, L.H.; Rhoads, R.P. Ruminant Nutrition Symposium: Ruminant Production and Metabolic Responses to Heat Stress. J. Anim. Sci. 2012, 90, 1855–1865. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Impacts of heat stress on global cattle production during the 21st century: A modelling study. Lancet Planet. Health 2022, 6, e192–e201. [Google Scholar] [CrossRef]
- Gaughan, J.B.; Holt, S.; Hahn, G.L.; Mader, T.L.; Eigenberg, R. Respiration rate: Is it a good measure of heat stress in cattle? Asian Australas. J. Anim. Sci. 2000, 13, 329–332. [Google Scholar]
- Finch, V.A.; Bennett, I.L.; Holmes, C.R. Sweating response in cattle and its relation to rectal temperature, tolerance of sun and metabolic rate. J. Agric. Sci. 1982, 99, 479–487. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Baida, B.E.L.; Swinbourne, A.M.; Barwick, J.; Leu, S.T.; van Wettere, W.H.E.J. Technologies for the automated collection of heat stress data in sheep. Anim. Biotelemetry 2021, 9, 4. [Google Scholar] [CrossRef]
- Burdick, N.; Carroll, J.; Dailey, J.; Randel, R.; Falkenberg, S.; Schmidt, T. Development of a self-contained, indwelling vaginal temperature probe for use in cattle research. J. Therm. Biol. 2012, 37, 339–343. [Google Scholar] [CrossRef]
- AlZahal, O.; AlZahal, H.; Steele, M.; Van Schaik, M.; Kyriazakis, I.; Duffield, T.; McBride, B. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. J. Dairy Sci. 2011, 94, 3568–3574. [Google Scholar] [CrossRef]
- Unruh, E.M.; Theurer, M.E.; White, B.J.; Larson, R.L.; Drouillard, J.S.; Schrag, N. Evaluation of infrared thermography as a diagnostic tool to predict heat stress events in feedlot cattle. Am. J. Veter Res. 2017, 78, 771–777. [Google Scholar] [CrossRef]
- McCorkell, R.; Wynne-Edwards, K.; Windeyer, C.; Schaefer, A. Limited efficacy of Fever Tag (R) temperature sensing ear tags in calves with naturally occurring bovine respiratory disease or induced bovine viral diarrhea virus infection. Can. Vet. J. 2014, 55, 688–690. [Google Scholar]
- Moallem, U.; Altmark, G.; Lehrer, H.; Arieli, A. Performance of high-yielding dairy cows supplemented with fat or concentrate under hot and humid climates. J. Dairy Sci. 2010, 93, 3192–3202. [Google Scholar] [CrossRef] [PubMed]
- Soriani, N.; Panella, G.; Calamari, L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. J. Dairy Sci. 2013, 96, 5082–5094. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Hall, L.; Collier, R.; Smith, J. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy Sci. 2015, 98, 118–127. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Rhoads, R.P.; Baumgard, L.H.; Suagee, J.K.; Sanders, S.R. Nutritional Interventions to Alleviate the Negative Consequences of Heat Stress. Adv. Nutr. Int. Rev. J. 2013, 4, 267–276. [Google Scholar] [CrossRef]
- Guo, L.; Welch, M.; Dobos, R.; Kwan, P.; Wang, W. Comparison of grazing behaviour of sheep on pasture with different sward surface heights using an inertial measurement unit sensor. Comput. Electron. Agric. 2018, 150, 394–401. [Google Scholar] [CrossRef]
- Peng, Y.; Kondo, N.; Fujiura, T.; Suzuki, T.; Wulandari; Yoshioka, H.; Itoyama, E. Classification of multiple cattle behavior patterns using a recurrent neural network with long short-term memory and inertial measurement units. Comput. Electron. Agric. 2019, 157, 247–253. [Google Scholar] [CrossRef]
- Sakai, K.; Oishi, K.; Miwa, M.; Kumagai, H.; Hirooka, H. Behavior classification of goats using 9-axis multi sensors: The effect of imbalanced datasets on classification performance. Comput. Electron. Agric. 2019, 166, 105027. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing. Version 3.6.1; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Collier, R.J.; Gebremedhin, K.G. Thermal Biology of Domestic Animals. Annu. Rev. Anim. Biosci. 2015, 3, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Baumgard, L.H.; Rhoads, R.P. Effects of Heat Stress on Postabsorptive Metabolism and Energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, J.B.; Bonner, S.L.; Loxton, I.; Mader, T.L. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle1. J. Anim. Sci. 2013, 91, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Committee on the Economic Development and Current Status of the Sheep Industry in the United States. Changes in the Sheep Industry in the United States; Board on Agriculture and Natural Resources. National Research Council: Washington, DC, USA, 2008. [Google Scholar]
- Marino, R.; Atzori, A.; D’Andrea, M.; Iovane, G.; Trabalza-Marinucci, M.; Rinaldi, L. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Rumin. Res. 2015, 135, 50–59. [Google Scholar] [CrossRef]
- Al-Dawood, A. Towards Heat Stress Management in Small Ruminants—A Review. Ann. Anim. Sci. 2017, 17, 59–88. [Google Scholar] [CrossRef]
- Bett, B.; Kiunga, P.; Gachohi, J.; Sindato, C.; Mbotha, D.; Robinson, T.; Lindahl, J.; Grace, D. Effects of climate change on the occurrence and distribution of livestock diseases. Prev. Veter Med. 2017, 137, 119–129. [Google Scholar] [CrossRef]
- Marai, I.; El-Darawany, A.; Fadiel, A.; Abdel-Hafez, M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Ames, D.R.; Nellor, J.E.; Adams, T. Energy Balance during Heat Stress in Sheep. J. Anim. Sci. 1971, 32, 784–788. [Google Scholar] [CrossRef]
- McManus, C.; Dallago, B.S.L.; Lehugeur, C.; Ribeiro, L.A.; Hermuche, P.; Guimarães, R.F.; de Carvalho Júnior, O.A.; Paiva, S.R. Patterns of heat tolerance in different sheep breeds in Brazil. Small Rumin. Res. 2016, 144, 290–299. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Taniguchi, K.; Nakamura, K.; Yoneyama, T.; Ito, T.; Sugino, T.; Obitsu, T. Effects of short-term exposure to heat stress on splanchnic metabolism in sheep. J. Anim. Feed. Sci. 2004, 13, 359–362. [Google Scholar] [CrossRef]
- Wojtas, K.; Cwynar, P.; Kołacz, R. Effect of thermal stress on physiological and blood parameters in merino sheep. Bull. Veter Inst. Pulawy 2014, 58, 283–288. [Google Scholar] [CrossRef]
- Castanheira, M.; Paiva, S.R.; Louvandini, H.; Landim, A.; Fiorvanti, M.C.S.; Dallago, B.S.; Correa, P.S.; McManus, C. Use of heat tolerance traits in discriminating between groups of sheep in central Brazil. Trop. Anim. Health Prod. 2010, 42, 1821–1828. [Google Scholar] [CrossRef]
- Machado, N.A.F.; Filho, J.A.D.B.; de Oliveira, K.P.L.; Parente, M.d.O.M.; de Siqueira, J.C.; Pereira, A.M.; Santos, A.R.D.; Sousa, J.M.S.; Rocha, K.S.; Viveiros, K.K.d.S.; et al. Biological rhythm of goats and sheep in response to heat stress. Biol. Rhythm. Res. 2019, 51, 1044–1052. [Google Scholar] [CrossRef]
- Kadzere, C.; Murphy, M.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Thwaites, C.J. Physiological Responses and Productivity in Sheep. Stress Physiology in Livestock. Volume II. Ungulates; CRC Press: Boca Raton, FL, USA, 1985; pp. 25–38. [Google Scholar]
- Srikandakumar, A.; Johnson, E.; Mahgoub, O. Effect of heat stress on respiratory rate, rectal temperature and blood chemistry in Omani and Australian Merino sheep. Small Rumin. Res. 2003, 49, 193–198. [Google Scholar] [CrossRef]
- Kitajima, K.; Oishi, K.; Miwa, M.; Anzai, H.; Setoguchi, A.; Yasunaka, Y.; Himeno, Y.; Kumagai, H.; Hirooka, H. Effects of Heat Stress on Heart Rate Variability in Free-Moving Sheep and Goats Assessed with Correction for Physical Activity. Front. Veter Sci. 2021, 8, 658763. [Google Scholar] [CrossRef]
- Asher, L.; Collins, L.M.; Ortiz-Pelaez, A.; Drewe, J.A.; Nicol, C.J.; Pfeiffer, D.U. Recent advances in the analysis of behavioural organization and interpretation as indicators of animal welfare. J. R. Soc. Interface 2009, 6, 1103–1119. [Google Scholar] [CrossRef]
- Martin, P.; Bateson, P. Recording methods. In Measuring Behaviour: An Introductory Guide; Cambridge University Press: Cambridge, UK, 2007; pp. 48–61. [Google Scholar] [CrossRef]
- Beede, D.; Collier, R.J. Potential Nutritional Strategies for Intensively Managed Cattle during Thermal Stress. J. Anim. Sci. 1986, 62, 543–554. [Google Scholar] [CrossRef]
- Cowley, F.; Barber, D.; Houlihan, A.; Poppi, D. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef]
- Bedford, A.; Beckett, L.; Harthan, L.; Wang, C.; Jiang, N.; Schramm, H.; Guan, L.L.; Daniels, K.M.; Hanigan, M.D.; White, R.R. Ruminal volatile fatty acid absorption is affected by elevated ambient temperature. Sci. Rep. 2020, 10, 2576. [Google Scholar] [CrossRef]
- O’driscoll, K.; Boyle, L.; Hanlon, A. A brief note on the validation of a system for recording lying behaviour in dairy cows. Appl. Anim. Behav. Sci. 2008, 111, 195–200. [Google Scholar] [CrossRef]
- Solano, L.; Barkema, H.; Pajor, E.; Mason, S.; LeBlanc, S.; Nash, C.; Haley, D.; Pellerin, D.; Rushen, J.; de Passillé, A.; et al. Associations between lying behavior and lameness in Canadian Holstein-Friesian cows housed in freestall barns. J. Dairy Sci. 2016, 99, 2086–2101. [Google Scholar] [CrossRef] [PubMed]
- Tullo, E.; Mattachini, G.; Riva, E.; Finzi, A.; Provolo, G.; Guarino, M. Effects of Climatic Conditions on the Lying Behavior of a Group of Primiparous Dairy Cows. Animals 2019, 9, 869. [Google Scholar] [CrossRef] [PubMed]
- Brown-Brandl, T.; Nienaber, J.; Eigenberg, R.; Mader, T.; Morrow, J.; Dailey, J. Comparison of heat tolerance of feedlot heifers of different breeds. Livest. Sci. 2006, 105, 19–26. [Google Scholar] [CrossRef]
- Islam, A.; Lomax, S.; Doughty, A.; Islam, M.R.; Jay, O.; Thomson, P.; Clark, C. Automated Monitoring of Cattle Heat Stress and Its Mitigation. Front. Anim. Sci. 2021, 2, 60. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Bakony, M.; Jurkovich, V.; Szenci, O. Lying down frequency as a discomfort index in heat stressed Holstein bull calves. Sci. Rep. 2018, 8, 15065. [Google Scholar] [CrossRef]
- Alvarenga, F.; Borges, I.; Palkovič, L.; Rodina, J.; Oddy, V.; Dobos, R. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 2016, 181, 91–99. [Google Scholar] [CrossRef]
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Trotter, M. Categorising sheep activity using a tri-axial accelerometer. Comput. Electron. Agric. 2018, 145, 289–297. [Google Scholar] [CrossRef]
- dos Reis, B.R.; Fuka, D.R.; Easton, Z.M.; White, R.R. An open-source research tool to study triaxial inertial sensors for monitoring selected behaviors in sheep. Transl. Anim. Sci. 2020, 4, txaa188. [Google Scholar] [CrossRef]
- Barwick, J.; Lamb, D.; Dobos, R.; Schneider, D.; Welch, M.; Trotter, M. Predicting Lameness in Sheep Activity Using Tri-Axial Acceleration Signals. Animals 2018, 8, 12. [Google Scholar] [CrossRef]
- Walton, E.; Casey, C.; Mitsch, J.; Vázquez-Diosdado, J.A.; Yan, J.; Dottorini, T.; Ellis, K.A.; Winterlich, A.; Kaler, J. Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour. R. Soc. Open Sci. 2018, 5, 171442. [Google Scholar] [CrossRef] [PubMed]
- Martiskainen, P.; Järvinen, M.; Skön, J.-P.; Tiirikainen, J.; Kolehmainen, M.; Mononen, J. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 2009, 119, 32–38. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Zheng, G.; Gao, S.; Zhao, K. Development and validation of an ensemble classifier for real-time recognition of cow behavior patterns from accelerometer data and location data. PLoS ONE 2018, 13, e0203546. [Google Scholar] [CrossRef]
- Radeski, M.; Ilieski, V. Gait and posture discrimination in sheep using a tri-axial accelerometer. Animal 2017, 11, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.D.; Kays, R.; Wikelski, M.; Wilson, R.; Klimley, A.P. Observing the unwatchable through acceleration logging of animal behavior. Anim. Biotelem. 2013, 1, 20. [Google Scholar] [CrossRef]
Respiration Rate, BrPM | Heart Rate, BPM | Rectal Temperature, °C | ||||
---|---|---|---|---|---|---|
Temperature °C | Gradual | Drastic | Gradual | Drastic | Gradual | Drastic |
20 | 17.9 (6.66) | 16.4 (8.71) | 56.3 (2.57) | 57.6 (2.95) | 38.3 (0.09) | 38.2 (0.12) |
27 | 23.1 (6.01) | 22.3 (6.01) | 55.9 (2.46) | 55.1 (2.46) | 38.4 (0.08) | 38.4 (0.08) |
35 | 66.0 (7.66) | 90.2 (7.66) | 54.8 (2.67) | 52.8 (2.75) | 38.6 (0.1) | 38.8 (0.1) |
p-Values | Respiration Rate | Heart Rate | Rectal Temperature | |||
Ambient Temperature | <0.0001 | 0.07 | <0.001 | |||
Temperature Trend | <0.0001 | 0.55 | 0.78 | |||
Temperature Lag | <0.0001 | <0.001 | 0.51 | |||
Ambient Temperature * Temperature Trend | <0.0001 | 0.23 | <0.001 | |||
Ambient Temperature * Temperature Lag | <0.0001 | <0.001 | <0.001 | |||
Temperature Trend * Temperature Lag | 0.92 | 0.26 | <0.001 |
Model Performance Indicators | Specificity | Sensitivity | Accuracy |
---|---|---|---|
Behavior Classifier | |||
Eating | 94% | 61% | 78% |
Lying | 71% | 83% | 77% |
Lying and Ruminating | 89% | 63% | 76% |
Standing | 97% | 36% | 67% |
Standing and Ruminating | 100% | 34% | 67% |
Model Performance Indicators | Specificity | Sensitivity | Accuracy | |
---|---|---|---|---|
Behavior Classifier | ||||
20 °C | Eating | 93% | 59% | 76% |
Lying | 69% | 84% | 76% | |
Lying and Ruminating | 89% | 56% | 73% | |
Standing | 96% | 31% | 64% | |
Standing and Ruminating | 100% | 28% | 64% | |
27 °C | Eating | 93% | 70% | 82% |
Lying | 75% | 82% | 78% | |
Lying and Ruminating | 89% | 64% | 76% | |
Standing | 97% | 40% | 68% | |
Standing and Ruminating | 100% | 37% | 68% | |
35 °C | Eating | 94% | 57% | 75% |
Lying | 75% | 80% | 78% | |
Lying and Ruminating | 87% | 68% | 77% | |
Standing | 96% | 43% | 70% | |
Standing and Ruminating | 100% | 35% | 67% |
Temperature Range Used to Derive Model | Evaluated at 20 °C | Evaluated at 27 °C | Evaluated at 35 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Accuracy | Precision | Accuracy | Precision | ||||
20 °C | Eating | 76 | 61 | Eating | 50 | 4 | Eating | 52 | 18 |
Lying | 76 | 85 | Lying | 52 | 83 | Lying | 50 | 56 | |
Lying and Ruminating | 73 | 37 | Lying and Ruminating | 49 | 10 | Lying and Ruminating | 51 | 21 | |
Standing | 64 | 34 | Standing | 49 | 5.2 | Standing | 50 | 8.6 | |
Standing and Ruminating | 64 | 29 | Standing and Ruminating | 50 | 0 | Standing and Ruminating | 50 | 0 | |
27 °C | Eating | 50 | 10 | Eating | 82 | 72 | Eating | 48 | 7.2 |
Lying | 50 | 52 | Lying | 78 | 81 | Lying | 50 | 50 | |
Lying and Ruminating | 51 | 40 | Lying and Ruminating | 76 | 64 | Lying and Ruminating | 49 | 40 | |
Standing | 49 | 0 | Standing | 68 | 39 | Standing | 50 | 1.4 | |
Standing and Ruminating | 50 | 0 | Standing and Ruminating | 68 | 32 | Standing and Ruminating | 50 | 0 | |
35 °C | Eating | 50 | 4.7 | Eating | 48 | 5 | Eating | 75 | 60 |
Lying | 50 | 35 | Lying | 48 | 34 | Lying | 78 | 79 | |
Lying and Ruminating | 50 | 48 | Lying and Ruminating | 49 | 50 | Lying and Ruminating | 77 | 68 | |
Standing | 50 | 6.5 | Standing | 51 | 8.5 | Standing | 70 | 44 | |
Standing and Ruminating | 50 | 0 | Standing and Ruminating | 50 | 0 | Standing and Ruminating | 67 | 17 |
Eating | Lying | Lying and Ruminating | Standing | Standing and Ruminating | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature °C | Bouts | Time per Bout | Total Time | Bouts | Time per Bout | Total Time | Bouts | Time per Bout | Total Time | Bouts | Time per Bout | Total Time | Bouts | Time per Bout | Total Time |
20 | 34.7 | 78.6 | 932 | 69 | 43.9 | 1336 | 54.4 | 50.3 | 1180 | 62.1 | 13.4 | 355 | 2.85 | 5.66 | 22 |
27 | 34.4 | 47.6 | 836 | 70.4 | 32.7 | 1417 | 51.3 | 35.6 | 1127 | 65.4 | 10.2 | 416 | 3.64 | 7.26 | 26.2 |
35 | 34 | 12.1 | 727 | 72.1 | 19.9 | 1511 | 47.8 | 18.9 | 1066 | 69.1 | 6.6 | 486 | 4.54 | 9.1 | 31.1 |
Eating | Lying | Lying and Ruminating | Standing | Standing and Ruminating | |||||||||||
p-Values | Bouts | Time per Bout | Total Time | Bouts | Time per Bout | Total Time | Bouts | Time per Bout | Total Time | Bouts | Time per Bout | Total Time | Bouts | Time per Bout | Total Time |
Ambient Temperature | 0.993 | 0.001 | 0.114 | 0.87 | 0.021 | 0.514 | 0.248 | 0.003 | 0.417 | 0.177 | 0.064 | 0.036 | 0.801 | 0.254 | 0.736 |
Temperature Trend | 0.784 | 0.421 | 0.182 | 0.174 | 0.501 | 0.412 | 0.14 | 0.425 | 0.673 | 0.994 | 0.983 | 0.466 | 0.976 | 0.412 | 0.644 |
Temperature Lag | 0.635 | 0.596 | 0.134 | 0.393 | 0.833 | 0.213 | 0.262 | 0.458 | 0.752 | 0.211 | 0.219 | 0.157 | 0.68 | 0.162 | 0.777 |
Ambient Temperature * Temperature Trend | 0.796 | 0.451 | 0.194 | 0.923 | 0.471 | 0.367 | 0.223 | 0.45 | 0.854 | 0.897 | 0.93 | 0.586 | 0.979 | 0.525 | 0.69 |
Ambient Temperature * Temperature Lag | 0.737 | 0.672 | 0.149 | 0.349 | 0.978 | 0.184 | 0.226 | 0.542 | 0.846 | 0.267 | 0.262 | 0.157 | 0.668 | 0.183 | 0.729 |
Temperature Trend * Temperature Lag | 0.929 | 0.046 | 0.094 | 0.271 | 0.161 | 0.789 | 0.829 | 0.134 | 0.145 | 0.411 | 0.078 | 0.372 | 0.163 | 0.479 | 0.344 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, B.R.d.; Nguyen, T.; Sujani, S.; White, R.R. Open-Source Wearable Sensors for Behavioral Analysis of Sheep Undergoing Heat Stress. Appl. Sci. 2023, 13, 9281. https://doi.org/10.3390/app13169281
Reis BRd, Nguyen T, Sujani S, White RR. Open-Source Wearable Sensors for Behavioral Analysis of Sheep Undergoing Heat Stress. Applied Sciences. 2023; 13(16):9281. https://doi.org/10.3390/app13169281
Chicago/Turabian StyleReis, Barbara Roqueto dos, Tien Nguyen, Sathya Sujani, and Robin R. White. 2023. "Open-Source Wearable Sensors for Behavioral Analysis of Sheep Undergoing Heat Stress" Applied Sciences 13, no. 16: 9281. https://doi.org/10.3390/app13169281
APA StyleReis, B. R. d., Nguyen, T., Sujani, S., & White, R. R. (2023). Open-Source Wearable Sensors for Behavioral Analysis of Sheep Undergoing Heat Stress. Applied Sciences, 13(16), 9281. https://doi.org/10.3390/app13169281