Enhanced Electrical Injury Using Triangular Interdigitated Electrodes for Catheter-Based Irreversible Electroporation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Model of Gastrointestinal Tract
2.2. Electrode Configuration
2.3. Numerical Analysis
2.4. Probability of Cell Death due to EI
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aycock, K.N.; Davalos, R.V. Irreversible Electroporation: Background, Theory, and Review of Recent Developments in Clinical Oncology. Bioelectricity 2019, 1, 214–234. [Google Scholar] [CrossRef]
- Wagstaff, P.G.K.; Buijs, M.; van den Bos, W.; de Bruin, D.M.; Zondervan, P.J.; de la Rosette, J.; Pes, M.P.L. Irreversible electroporation: State of the art. OncoTargets Ther. 2016, 9, 2437–2446. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.Y.; Ai, J.; Nie, C.H.; Zhou, G.H.; Chen, X.H.; Zhang, Y.L.; Zhou, T.Y.; Chen, S.Q.; Wang, B.Q.; Zheng, S.S.; et al. Feasibility of computed tomography-guided irreversible electroporation for porcine kidney ablation. J. Cancer Res. Ther. 2020, 16, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.L.; Li, S. Irreversible electroporation for liver cancer ablation: A meta analysis. Eur. J. Surg. Oncol. 2022, 48, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, P.G.K.; de Bruin, D.M.; van den Bos, W.; Ingels, A.; van Gemert, M.J.C.; Zondervan, P.J.; Verdaasdonk, R.M.; van Lienden, K.P.; van Leeuwen, T.G.; de la Rosette, J.; et al. Irreversible electroporation of the porcine kidney: Temperature development and distribution. Urol. Oncol.-Semin. Orig. Investig. 2015, 33, 7. [Google Scholar] [CrossRef]
- Saini, A.; Breen, I.; Alzubaidi, S.; Pershad, Y.; Sheth, R.; Naidu, S.; Knuttinen, M.G.; Albadawi, H.; Oklu, R. Irreversible Electroporation in Liver Cancers and Whole Organ Engineering. J. Clin. Med. 2019, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, S.; Leonardo, M.; Chengodu, T.; Bagguley, D.; Lawrentschuk, N. Irreversible Electroporation for Prostate Cancer. Life 2021, 11, 490. [Google Scholar] [CrossRef]
- Murphy, K.R.; Aycock, K.N.; Hay, A.N.; Rossmeisl, J.H.; Davalos, R.V.; Dervisis, N.G. High-frequency irreversible electroporation brain tumor ablation: Exploring the dynamics of cell death and recovery. Bioelectrochemistry 2022, 144, 8. [Google Scholar] [CrossRef]
- Morozov, A.; Taratkin, M.; Barret, E.; Singla, N.; Bezrukov, E.; Chinenov, D.; Enikeev, M.; Rivas, J.G.; Shpikina, A.; Enikeev, D. A systematic review of irreversible electroporation in localised prostate cancer treatment. Andrologia 2020, 52, 13. [Google Scholar] [CrossRef]
- Lv, Y.P.; Tang, X.; Peng, W.C.; Cheng, X.; Chen, S.; Yao, C.G. Analysis on reversible/irreversible electroporation region in lung adenocarcinoma cell model in vitro with electric pulses delivered by needle electrodes. Phys. Med. Biol. 2020, 65, 9. [Google Scholar] [CrossRef]
- Lee, E.W.; Shahrouki, P.; Peterson, S.; Tafti, B.A.; Ding, P.X.; Kee, S.T. Safety of Irreversible Electroporation Ablation of the Pancreas. Pancreas 2021, 50, 1281–1286. [Google Scholar] [CrossRef]
- Fang, Z.; Chen, L.C.; Moser, M.A.J.; Zhang, W.J.; Qin, Z.Y.; Zhang, B. Electroporation-Based Therapy for Brain Tumors: A Review. J. Biomech. Eng.-Trans. Asme 2021, 143, 14. [Google Scholar] [CrossRef] [PubMed]
- Kurata, K.; Yoshimatsu, S.; Takamatsu, H. Low-Voltage Irreversible Electroporation Using a Comb-Shaped Contact Electrode. IEEE Trans. Biomed. Eng. 2020, 67, 420–427. [Google Scholar] [CrossRef]
- Ren, F.; Li, Q.; Gao, X.; Zhu, K.; Zhang, J.; Chen, X.; Yan, X.; Chu, D.; Hu, L.; Gao, Z.; et al. Electrical and thermal analyses of catheter-based irreversible electroporation of digestive tract. Int. J. Hyperth. 2019, 36, 854–867. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Choi, H.S.; Chun, H.J.; Kim, E.S.; Keum, B.; Seo, Y.S.; Jeen, Y.T.; Lee, H.S.; Um, S.H.; Kim, C.D.; et al. EUS-guided irreversible electroporation using endoscopic needle-electrode in porcine pancreas. Surg. Endosc. 2019, 33, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.J.; Choi, H.S.; Keum, B.; Bang, E.J.; Lee, K.W.; Kim, S.H.; Yim, S.Y.; Lee, J.M.; Kim, E.S.; Seo, Y.S.; et al. Feasibility and effectiveness of endoscopic irreversible electroporation for the upper gastrointestinal tract: An experimental animal study. Sci. Rep. 2021, 11, 15353. [Google Scholar] [CrossRef] [PubMed]
- Rohan, T.; Andrasina, T.; Juza, T.; Matkulcik, P.; Cervinka, D.; Svobodova, I.; Novotna, V.; Bernard, V.; Valek, V.; Goldberg, S.N. Experimental model of occluded biliary metal stent recanalization using irreversible electroporation via a tubular catheter. Int. J. Hyperth. 2021, 38, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Wi, S.M.; Ahn, J.G.; Son, S.; Lim, H.; Park, Y.; Eun, H.J.; Park, J.B.; Lim, H.; Pak, S.; et al. Engineering Geometric Electrodes for Electric Field-Enhanced High-Performance Flexible In-Plane Micro-Supercapacitors. Energy Environ. Mater. 2023, e12581. [Google Scholar] [CrossRef]
- Choi, S.E.; Khoo, H.; Hur, S.C. Recent Advances in Microscale Electroporation. Chem. Rev. 2022, 122, 11247–11286. [Google Scholar] [CrossRef]
- Kosri, E.; Ibrahim, F.; Thiha, A.; Madou, M. Micro and Nano Interdigitated Electrode Array (IDEA)-Based MEMS/NEMS as Electrochemical Transducers: A Review. Nanomaterials 2022, 12, 4171. [Google Scholar] [CrossRef]
- Barnes, E.O.; Fernández-la-Villa, A.; Pozo-Ayuso, D.F.; Castaño-Alvarez, M.; Lewis, G.E.M.; Dale, S.E.C.; Marken, F.; Compton, R.G. Interdigitated ring electrodes: Theory and experiment. J. Electroanal. Chem. 2013, 709, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Hong, W.; Song, Z.; Guo, Z.; Wang, L.; You, M.; Lin, Z.; Yang, B.; Qin, M.; Liu, J. Multifunctional Microelectrode for Low-Voltage Pulsed Field Ablation in Atrial Fibrillation. IEEE Electron Device Lett. 2022, 43, 1965–1968. [Google Scholar] [CrossRef]
- Yoshimatsu, S.; Yoshida, M.; Kurata, K.; Takamatsu, H. Development of contact irreversible electroporation using a comb-shaped miniature electrode. J. Therm. Sci. Technol. 2017, 12, JTST0023. [Google Scholar] [CrossRef] [Green Version]
- Novickij, V.; Tabasnikov, A.; Smith, S.; Grainys, A.; Novickij, J. Analysis of Planar Circular Interdigitated Electrodes for Electroporation. Iete Tech. Rev. 2015, 32, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Abu-Ghanem, Y.; Meydan, C.; Segev, L.; Rubin, M.; Blumenfeld, O.; Spivak, H. Gastric Wall Thickness and the Choice of Linear Staples in Laparoscopic Sleeve Gastrectomy: Challenging Conventional Concepts. Obes. Surg. 2017, 27, 837–843. [Google Scholar] [CrossRef]
- Yazar, F.M.; Baykara, M.; Karaagac, M.; Bulbuloglu, E. The Role of Conventional Ultrasonography in the Evaluation of Antrum Wall Thickness in Obese Patients. Obes. Surg. 2016, 26, 2995–3000. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, L.; Rawlins, M.P.; Teel, D. Human tissue thickness measurements from excised sleeve gastrectomy specimens. Surg. Endosc. Other Interv. Tech. 2014, 28, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Nickfarjam, A.; Firoozabadi, S.M.P. Parametric study of irreversible electroporation with different needle electrodes: Electrical and thermal analysis. Int. J. Hyperth. 2014, 30, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Duck, F.A. Chapter 6—Electrical Properties of Tissue. In Physical Properties of Tissues; Duck, F.A., Ed.; Academic Press: Cambridge, MA, USA, 1990; pp. 167–223. [Google Scholar]
- Zhao, Y.; Zheng, S.; Beitel-White, N.; Liu, H.; Yao, C.; Davalos, R.V. Development of a Multi-Pulse Conductivity Model for Liver Tissue Treated With Pulsed Electric Fields. Front. Bioeng. Biotechnol. 2020, 8, 396. [Google Scholar] [CrossRef]
- Beitel-White, N.; Bhonsle, S.; Martin, R.C.G.; Davalos, R.V. Electrical Characterization of Human Biological Tissue for Irreversible Electroporation Treatments. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2018, 4170–4173. [Google Scholar] [CrossRef]
- Golberg, A.; Bruinsma, B.G.; Uygun, B.E.; Yarmush, M.L. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by “electric field sinks’”. Sci. Rep. 2015, 5, 8485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, P.A.; Davalos, R.V.; Miklavcic, D. A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue. PLoS ONE 2014, 9, e103083. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Moser, M.; Zhang, E.; Zhang, W.; Zhang, B. Optimization of Electrode Configuration and Pulse Strength in Irreversible Electroporation for Large Ablation Volumes Without Thermal Damage. J. Eng. Sci. Med. Diagn. Ther. 2018, 1, 21002. [Google Scholar] [CrossRef]
- Canatella, P.J.; Karr, J.F.; Petros, J.A.; Prausnitz, M.R. Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys. J. 2001, 80, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindelauf, K.H.K.; Baragona, M.; Baumann, M.; Maessen, R.T.H.; Ritter, A. Pulse Parameters and Thresholds for (ir)Reversible Electroporation on Hepatocellular Carcinoma Cells in Vitro. Technol. Cancer Res. Treat. 2023, 22, 15330338221136694. [Google Scholar] [CrossRef] [PubMed]
Material | Muscularis Propria | Submucosal Layer | Mucosal Layer | Electrode |
---|---|---|---|---|
Electrical conductivity (S/m) | 0.202 | 0.251 | 0.511 | 4.5 × 107 |
1.5 | 1.8 | 1.8 | - | |
500 | 600 | 600 | - | |
300 | 150 | 150 | - | |
Density () | 1090 | 1027 | 1088 | 19,300 |
Specific heat capacity () | 3421 | 2372 | 3690 | 129 |
Thermal conductivity ( | 0.49 | 0.39 | 0.53 | 317 |
References | [14,31,32,33,34] | [14,31,32,33,34] | [14,31,32,33,34] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-J.; Kim, D.Y. Enhanced Electrical Injury Using Triangular Interdigitated Electrodes for Catheter-Based Irreversible Electroporation. Appl. Sci. 2023, 13, 8455. https://doi.org/10.3390/app13148455
Lee D-J, Kim DY. Enhanced Electrical Injury Using Triangular Interdigitated Electrodes for Catheter-Based Irreversible Electroporation. Applied Sciences. 2023; 13(14):8455. https://doi.org/10.3390/app13148455
Chicago/Turabian StyleLee, Dong-Jin, and Dae Yu Kim. 2023. "Enhanced Electrical Injury Using Triangular Interdigitated Electrodes for Catheter-Based Irreversible Electroporation" Applied Sciences 13, no. 14: 8455. https://doi.org/10.3390/app13148455
APA StyleLee, D.-J., & Kim, D. Y. (2023). Enhanced Electrical Injury Using Triangular Interdigitated Electrodes for Catheter-Based Irreversible Electroporation. Applied Sciences, 13(14), 8455. https://doi.org/10.3390/app13148455