On a Novel Approach to Correcting Temperature Dependencies in Magnetic Observatory Data
Abstract
:1. Introduction
2. Existing Approaches to Assessing the Quality of Observatory Data
3. Temperature Dependence in Data from the Saint Petersburg Observatory
3.1. Typical Temperature Dependence in February 2021
3.2. Temperature Dependence in June 2021 when the Spline Breaks
3.3. Temperature Dependence in November 2021 during a Magnetic Storm
3.4. Temperature Dependence in December 2021 with an Abnormally Large Seasonal Temperature Change
4. Temperature Correction of Data
4.1. Data for February 2021
4.2. Data for June 2021
4.3. Data for November 2021
4.4. Data for December 2021
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Love, J.J.; Chulliat, A. An international network of magnetic observatories. Eos Trans. Am. Geophys. Union 2013, 94, 373–374. [Google Scholar] [CrossRef]
- Soloviev, A.A. Some challenges of geomagnetism addressed with the use of ground and satellite observations. Russ. Geol. Geophys. 2023, 45–60. [Google Scholar] [CrossRef]
- Lyubovtseva, Y.S.; Gvishiani, A.D.; Soloviev, A.A.; Samokhina, O.O.; Krasnoperov, R.I. Sixtieth anniversary of the International Geophysical Year (1957–2017)–contribution of the Soviet Union. Hist. Geo-Space Sci. 2020, 11, 157–171. [Google Scholar] [CrossRef]
- Korsmo, F.L. The Origins and Principles of the World Data Center System. Data Sci. J. 2009, 8, IGY55–IGY65. [Google Scholar] [CrossRef]
- St-Louis, B. INTERMAGNET Technical Reference Manual, version 5.0.0; INTERMAGNET Operations Committee and Executive Council: Ottawa, ON, Canada, 2020; p. 146. [Google Scholar]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Petrie, E.J.; King, M.A.; Moore, P.; Lavallée, D.A. Higher-order ionospheric effects on the GPS reference frame and velocities. J. Geophys. Res. 2010, 115, 148–227. [Google Scholar] [CrossRef] [Green Version]
- Soloviev, A.A.; Sidorov, R.V.; Oshchenko, A.A.; Zaitsev, A.N. On the need for accurate monitoring of the geomagnetic field during directional drilling in the Russian Arctic, Izvestiya. Phys. Solid Earth 2022, 58, 420–434. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Lukianova, R.Y. Estimating the influence of geomagnetic disturbances on the trajectory of the directional drilling of deep wells in the Arctic region. Izv. Phys. Solid Earth 2018, 54, 554–564. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Lukianova, R.Y.; Soloviev, A.A. Geomagnetic field analysis and directional drilling accuracy problem in the Arctic region. Gorn. Zhurnal 2015, 10, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Rasson, J.L. About Absolute Geomagnetic Measurements in the Observatory and in the Field; Publication Scientifique et Technique N 040; L’Institut Royal Metrologique de Belgique: Brussel, Belgium, 2005. [Google Scholar]
- Xin, C.J.; Shen, W.R.; Li, Q.H.; Tian, W.T. The comparison and analysis of the baseline values of null method and offset method. Seismol. Geomagn. Obs. Res. 2003, 24, 77–80. [Google Scholar]
- Zhang, S.Q.; Yang, D.M. Study on the stability and accuracy of baseline values measured during the calibrating time intervals. Data Sci. J. 2011, 10, IAGA19–IAGA24. [Google Scholar] [CrossRef]
- Primdahl, P. The fluxgate magnetometer. J. Phys. E Sci. Instrum. 1979, 12, 241–253. [Google Scholar] [CrossRef]
- Jankowski, J.; Sucksdorff, C. Guide for Magnetic Measurements and Observatory Practice; IAGA: Warsaw, Poland, 1996; pp. 225–232. [Google Scholar]
- Csontos, A.; Hegymegi, L.; Heilig, B. Temperature tests on modern magnetometers. Publ. Inst. Geophys. Pol. Acad. Sci. 2007, 99, 171–177. [Google Scholar]
- Ripka, P. Magnetic Sensors and Magnetometers, 2nd ed.; Artech House: Norwood, MA, USA, 2021; 416p, ISBN 1630817430/9781630817435. [Google Scholar]
- Janošek, M.; Butta, M.; Vlk, M.; Bayer, T. Improving Earth’s Magnetic Field Measurements by Numerical Corrections of Thermal Drifts and Man-Made Disturbances. J. Sens. 2018, 2018, 1804092. [Google Scholar] [CrossRef]
- He, Z.; Hu, X.; Teng, Y.; Zhang, X.; Shen, X. Data agreement analysis and correction of comparative geomagnetic vector observations. Earth Planets Space 2022, 74, 29. [Google Scholar] [CrossRef]
- Peltier, A.; Chulliat, A. On the feasibility of promptly producing quasi-definitive magnetic observatory data. Earth Planets Space 2010, 62, e5–e8. [Google Scholar] [CrossRef] [Green Version]
- Soloviev, A.A.; Peregoudov, D.V. Verification of the geomagnetic field models using historical satellite measurements obtained in 1964 and 1970. Earth Planets Space 2022, 74, 187. [Google Scholar] [CrossRef]
- Sidorov, R.V.; Soloviev, A.A.; Krasnoperov, R.I.; Kudin, D.V.; Grudnev, A.A.; Kopytenko, Y.A.; Kotikov, A.L.; Sergushin, P. Saint Petersburg magnetic observatory: From Voeikovo subdivision to INTERMAGNET certification. Geosci. Instrum. Methods Data Syst. 2017, 6, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Soloviev, A.A.; Kopytenko, Y.A.; Kotikov, A.L.; Kudin, D.V.; Sidorov, R.V. 2017 Definitive Data from Geomagnetic Observatory Saint Petersburg (IAGA Code: SPG): Minute Values of X, Y, Z Components and Total Intensity F of the Earth’s Magnetic Field; ESDB Repository; GCRAS: Moscow, Russia, 2020. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Kopytenko, Y.A.; Kotikov, A.L.; Kudin, D.V.; Sidorov, R.V.; Matveev, M.N. 2020 Definitive Data from Geomagnetic Observatory Saint Petersburg (IAGA Code: SPG): Minute Values of X, Y, Z Components and Total Intensity F of the Earth’s Magnetic Field; ESDB Repository; GCRAS: Moscow, Russia, 2021. [Google Scholar] [CrossRef]
- Kudin, D.V.; Soloviev, A.A.; Sidorov, R.V.; Starostenko, V.I.; Sumaruk, Y.P.; Legostaeva, O.V. Advanced production of quasi- definitive magnetic observatory data of the INTERMAGNET standard. Geomagn. Aeron. 2021, 61, 54–67. [Google Scholar] [CrossRef]
- Khomutov, S.Y.; Kusonsky, O.A.; Rasson, J.L.; Sapunov, V.A. The Using of the Absolute Overhauser Magnetometers POS-1 in Observatory Practice: The Results of the First 2.5 Years. In Proceedings of the XI IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing: Book of Abstracts, Kakioka, Japan, 9–12 November 2004. [Google Scholar]
- Korepanov, V.; Marusenkov, A. Fluxgate magnetometers design peculiarities. Surv. Geophys. 2012, 33, 1059–1079. [Google Scholar] [CrossRef] [Green Version]
- Lesur, V.; Heumez, B.; Telali, A.; Lalanne, X.; Soloviev, A.A. Estimating error statistics for Chambon-la-Forêt observatory definitive data. Ann. Geophys. 2017, 35, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Soloviev, A.A.; Lesur, V.; Kudin, D.V. On the feasibility of routine baseline improvement in processing of geomagnetic observatory data. Earth Planets Space 2018, 70, 16. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Dobrovolsky, M.N.; Kudin, D.V.; Sidorov, R.V. Minute Values of X, Y, Z Components and Total Intensity F of the Earth’s Magnetic Field from Geomagnetic Observatory Klimovskaya (IAGA Code: KLI); ESDB Repository; Geophysical Center of the Russian Academy of Sciences: Moscow, Russia, 2015. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Sidorov, R.V.; Krasnoperov, R.I.; Grudnev, A.A.; Khokhlov, A.V. Klimovskaya: A New Geomagnetic Observatory. Geomagn. Aeron. 2016, 56, 342–354. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Kudin, D.V.; Sidorov, R.V.; Kotikov, A.L. Detection of the 2020 Geomagnetic Jerk Using near Real-Time Data from the “St. Petersburg” and “Klimovskaya” Magnetic Observatories. Dokl. Earth Sci. 2022, 507, 925–929. [Google Scholar] [CrossRef]
- Owens, D.; Abeysirigunawardena, D.; Biffard, B.; Chen, Y.; Conley, P.; Jenkyns, R.; Kerschtien, S.; Lavallee, T.; MacArthur, M.; Mousseau, J.; et al. The Oceans 2.0/3.0 Data Management and Archival System. Front. Mar. Sci. 2022, 9, 806452. [Google Scholar] [CrossRef]
- Chatzievangelou, D.; Aguzzi, J.; Scherwath, M.; Thomsen, L. Quality Control and Pre-Analysis Treatment of the Environmental Datasets Collected by an Internet Operated Deep-Sea Crawler during Its Entire 7-Year Long Deployment (2009–2016). Sensors 2020, 20, 2991. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudin, D.; Soloviev, A.; Matveev, M.; Shevaldysheva, O. On a Novel Approach to Correcting Temperature Dependencies in Magnetic Observatory Data. Appl. Sci. 2023, 13, 8008. https://doi.org/10.3390/app13148008
Kudin D, Soloviev A, Matveev M, Shevaldysheva O. On a Novel Approach to Correcting Temperature Dependencies in Magnetic Observatory Data. Applied Sciences. 2023; 13(14):8008. https://doi.org/10.3390/app13148008
Chicago/Turabian StyleKudin, Dmitry, Anatoly Soloviev, Mikhail Matveev, and Olga Shevaldysheva. 2023. "On a Novel Approach to Correcting Temperature Dependencies in Magnetic Observatory Data" Applied Sciences 13, no. 14: 8008. https://doi.org/10.3390/app13148008
APA StyleKudin, D., Soloviev, A., Matveev, M., & Shevaldysheva, O. (2023). On a Novel Approach to Correcting Temperature Dependencies in Magnetic Observatory Data. Applied Sciences, 13(14), 8008. https://doi.org/10.3390/app13148008