Pre-Season ACL Risk Classification of Professional and Semi-Professional Football Players, via a Proof-of-Concept Test Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Baseline Assessment
2.4. Muscle-Strength Testing
2.5. Single-Leg Triple Hop (SLTH) for Distance Test
2.6. Landing Error Scoring System (LESS)
2.7. Core Stability Tests
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tayfur, B.; Charuphongsa, C.; Morrissey, D.; Miller, S.C. Neuromuscular Function of the Knee Joint Following Knee Injuries: Does It Ever Get Back to Normal? A Systematic Review with Meta-Analyses. Sports Med. 2021, 51, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Webster, K.E. Fifty-Five per Cent Return to Competitive Sport Following Anterior Cruciate Ligament Reconstruction Surgery: An Updated Systematic Review and Meta-Analysis Including Aspects of Physical Functioning and Contextual Factors. Br. J. Sports Med. 2014, 48, 1543–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiggins, A.J.; Grandhi, R.K.; Schneider, D.K.; Stanfield, D.; Webster, K.E.; Myer, G.D. Risk of Secondary Injury in Younger Athletes after Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2016, 44, 1861–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, M.A.; Behrend, H.; Henz, S.; Stutz, G.; Rukavina, A.; Kuster, M.S. Function, Osteoarthritis and Activity after ACL-Rupture: 11 Years Follow-up Results of Conservative versus Reconstructive Treatment. Knee Surg. Sport. Traumatol. Arthrosc. 2008, 16, 442–448. [Google Scholar] [CrossRef]
- Lie, M.M.; Risberg, M.A.; Storheim, K.; Engebretsen, L.; Øiestad, B.E. What’s the Rate of Knee Osteoarthritis 10 Years after Anterior Cruciate Ligament Injury? An Updated Systematic Review. Br. J. Sports Med. 2019, 53, 1162–1167. [Google Scholar] [CrossRef] [Green Version]
- Kuenze, C.; Pietrosimone, B.; Currie, K.D.; Walton, S.R.; Kerr, Z.Y.; Brett, B.L.; Chandran, A.; DeFreese, J.D.; Mannix, R.; Echemendia, R.J.; et al. Joint Injury and OA Are Associated with Cardiovascular Disease Risk Factors in Former NFL Athletes: An NFL-LONG Study. J. Athl. Train. 2023. [Google Scholar] [CrossRef]
- Padua, D.A.; DiStefano, L.J.; Beutler, A.I.; De La Motte, S.J.; DiStefano, M.J.; Marshall, S.W. The Landing Error Scoring System as a Screening Tool for an Anterior Cruciate Ligament Injury-Prevention Program in Elite-Youth Soccer Athletes. J. Athl. Train. 2015, 50, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Ford, K.R.; Hoogenboom, B.J.; Myer, G.D. Understanding and Preventing Acl Injuries: Current Biomechanical and Epidemiologic Considerations—Update 2010. N. Am. J. Sports Phys. Ther. 2010, 5, 234–251. [Google Scholar]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; Van Den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Pappas, E.; Carpes, F.P. Lower Extremity Kinematic Asymmetry in Male and Female Athletes Performing Jump-Landing Tasks. J. Sci. Med. Sport 2012, 15, 87–92. [Google Scholar] [CrossRef]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical Measures during Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury after Anterior Cruciate Ligament Reconstruction and Return to Sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef] [Green Version]
- Paterno, M.V.; Huang, B.; Thomas, S.; Hewett, T.E.; Schmitt, L.C. Clinical Factors That Predict a Second ACL Injury After ACL Reconstruction and Return to Sport: Preliminary Development of a Clinical Decision Algorithm. Orthop. J. Sport. Med. 2017, 5, 2325967117745279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagelli, C.V.; Hewett, T.E. Should Return to Sport Be Delayed Until 2 Years after Anterior Cruciate Ligament Reconstruction? Biological and Functional Considerations. Sport. Med. 2017, 47, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morishige, Y.; Harato, K.; Kobayashi, S.; Niki, Y.; Matsumoto, M.; Nakamura, M.; Nagura, T. Difference in Leg Asymmetry between Female Collegiate Athletes and Recreational Athletes during Drop Vertical Jump. J. Orthop. Surg. Res. 2019, 14, 424. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Bredin, S.S.D.; Taunton, J.; Jiang, Q.; Wu, N.; Warburton, D.E.R. Association between Inter-Limb Asymmetries in Lower-Limb Functional Performance and Sport Injury: A Systematic Review of Prospective Cohort Studies. J. Clin. Med. 2022, 11, 360. [Google Scholar] [CrossRef]
- Mendonça, L.D.M. To Do or Not to Do?—The Value of the Preseason Assessment in Sport Injury Prevention. Int. J. Sports Phys. Ther. 2022, 17, 111–113. [Google Scholar] [CrossRef]
- Gokeler, A.; Welling, W.; Zaffagnini, S.; Seil, R.; Padua, D. Development of a Test Battery to Enhance Safe Return to Sports after Anterior Cruciate Ligament Reconstruction. Knee Surg. Sport. Traumatol. Arthrosc. 2017, 25, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Gokeler, A.; Dingenen, B.; Hewett, T.E. Rehabilitation and Return to Sport Testing After Anterior Cruciate Ligament Reconstruction: Where Are We in 2022? Arthrosc. Sport. Med. Rehabil. 2022, 4, e77–e82. [Google Scholar] [CrossRef]
- Everard, E.; Lyons, M.; Harrison, A.J. Examining the Reliability of the Landing Error Scoring System with Raters Using the Standardized Instructions and Scoring Sheet. J. Sport Rehabil. 2020, 29, 519–525. [Google Scholar] [CrossRef]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E.; Beutler, A.I. The Landing Error Scoring System (LESS) Is a Valid and Reliable Clinical Assessment Tool of Jump-Landing Biomechanics: The Jump-ACL Study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef]
- Whiteley, R.; Jacobsen, P.; Prior, S.; Skazalski, C.; Otten, R.; Johnson, A. Correlation of Isokinetic and Novel Hand-Held Dynamometry Measures of Knee Flexion and Extension Strength Testing. J. Sci. Med. Sport 2012, 15, 444–450. [Google Scholar] [CrossRef]
- Welling, W.; Benjaminse, A.; Lemmink, K.; Gokeler, A. Passing Return to Sports Tests after ACL Reconstruction Is Associated with Greater Likelihood for Return to Sport but Fail to Identify Second Injury Risk. Knee 2020, 27, 949–957. [Google Scholar] [CrossRef]
- van Melick, N.; Pronk, Y.; Nijhuis-van der Sanden, M.; Rutten, S.; van Tienen, T.; Hoogeboom, T. Meeting Movement Quantity or Quality Return to Sport Criteria Is Associated with Reduced Second ACL Injury Rate. J. Orthop. Res. 2022, 40, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. The Effects of Core Proprioception on Knee Injury: A Prospective Biomechanical-Epidemiological Study. Am. J. Sports Med. 2007, 35, 368–373. [Google Scholar] [CrossRef]
- Kibler, W.B.; Press, J.; Sciascia, A. The Role of Core Stability in Athletic Function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, G.B.; Giles, J.L.; Seibel, D.K. Prediction of Core and Lower Extremity Strains and Sprains in Collegiate Football Players: A Preliminary Study. J. Athl. Train. 2012, 47, 264–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Blaiser, C.; Roosen, P.; Willems, T.; De Bleecker, C.; Vermeulen, S.; Danneels, L.; De Ridder, R. The Role of Core Stability in the Development of Non-Contact Acute Lower Extremity Injuries in an Athletic Population: A Prospective Study. Phys. Ther. Sport 2021, 47, 165–172. [Google Scholar] [CrossRef]
- Mehl, J.; Diermeier, T.; Herbst, E.; Imhoff, A.B.; Stoffels, T.; Zantop, T.; Petersen, W.; Achtnich, A. Evidence-Based Concepts for Prevention of Knee and ACL Injuries. 2017 Guidelines of the Ligament Committee of the German Knee Society (DKG). Arch. Orthop. Trauma Surg. 2018, 138, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). Epidemiology 2007, 18, 805–835. [Google Scholar] [CrossRef] [Green Version]
- Pasanen, K.; Rossi, M.T.; Parkkari, J.; Heinonen, A.; Steffen, K.; Myklebust, G.; Krosshaug, T.; Vasankari, T.; Kannus, P.; Avela, J.; et al. Predictors of Lower Extremity Injuries in Team Sports (PROFITS-Study): A Study Protocol. BMJ Open Sport Exerc. Med. 2017, 1, e000076. [Google Scholar] [CrossRef]
- Stark, T.; Walker, B.; Phillips, J.K.; Fejer, R.; Beck, R. Hand-Held Dynamometry Correlation with the Gold Standard Isokinetic Dynamometry: A Systematic Review. PM&R 2011, 3, 472–479. [Google Scholar] [CrossRef]
- Hansen, E.M.; McCartney, C.N.; Sweeney, R.S.; Palimenio, M.R.; Grindstaff, T.L. Hand-Held Dynamometer Positioning Impacts Discomfort During Quadriceps Strength Testing: A Validity and Reliability Study. Int. J. Sports Phys. Ther. 2015, 10, 62–68. [Google Scholar]
- Whiteley, R.; van Dyk, N.; Wangensteen, A.; Hansen, C. Clinical Implications from Daily Physiotherapy Examination of 131 Acute Hamstring Injuries and Their Association with Running Speed and Rehabilitation Progression. Br. J. Sports Med. 2018, 52, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Goossens, L.; Witvrouw, E.; Vanden Bossche, L.; De Clercq, D. Lower Eccentric Hamstring Strength and Single Leg Hop for Distance Predict Hamstring Injury in PETE Students. Eur. J. Sport Sci. 2015, 15, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Thorborg, K.; Petersen, J.; Magnusson, S.P.; Hölmich, P. Clinical Assessment of Hip Strength Using a Hand-Held Dynamometer Is Reliable. Scand. J. Med. Sci. Sports 2010, 20, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Squillante, A.; Dawes, J. The Single Leg Triple Hop for Distance Test. Strength Cond. J. 2017, 39, 94–98. [Google Scholar] [CrossRef]
- Hamilton, R.T.; Shultz, S.J.; Schmitz, R.J.; Perrin, D.H. Triple-Hop Distance as a Valid Predictor of Lower Limb Strength and Power. J. Athl. Train. 2008, 43, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.C.; Johnson, R.J.; Shultz, S.J.; Tourville, T.; Holterman, L.A.; Slauterbeck, J.; Vacek, P.M.; Beynnon, B.D. A Prospective Evaluation of the Landing Error Scoring System (LESS) as a Screening Tool for Anterior Cruciate Ligament Injury Risk. Am. J. Sports Med. 2012, 40, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Liveris, N.I.; Tsarbou, C.; Tsimeas, P.D.; Papageorgiou, G.; Xergia, S.A.; Tsiokanos, A. Evaluating the Effects of Match-Induced Fatigue on Landing Ability; the Case of the Basketball Game. Int. J. Exerc. Sci. 2021, 14, 768–778. [Google Scholar]
- Tsarbou, C.; Liveris, N.I.; Tsimeas, P.D.; Papageorgiou, G.; Xergia, S.A.; Tsiokanos, A. The Effect of Fatigue on Jump Height and the Risk of Knee Injury after a Volleyball Training Game: A Pilot Study. Biomed. Hum. Kinet. 2021, 13, 197–204. [Google Scholar] [CrossRef]
- De Blaiser, C.; De Ridder, R.; Willems, T.; Danneels, L.; Vanden Bossche, L.; Palmans, T.; Roosen, P. Evaluating Abdominal Core Muscle Fatigue: Assessment of the Validity and Reliability of the Prone Bridging Test. Scand. J. Med. Sci. Sports 2018, 28, 391–399. [Google Scholar] [CrossRef]
- McGill, S.M.; Childs, A.; Liebenson, C. Endurance Times for Low Back Stabilization Exercises: Clinical Targets for Testing and Training from a Normal Database. Arch. Phys. Med. Rehabil. 1999, 80, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Coorevits, P.; Danneels, L.; Cambier, D.; Ramon, H.; Vanderstraeten, G. Assessment of the Validity of the Biering-Sørensen Test for Measuring Back Muscle Fatigue Based on EMG Median Frequency Characteristics of Back and Hip Muscles. J. Electromyogr. Kinesiol. 2008, 18, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Markström, J.L.; Naili, J.E.; Häger, C.K. A Minority of Athletes Pass Symmetry Criteria in a Series of Hop and Strength Tests Irrespective of Having an ACL Reconstructed Knee or Being Noninjured. Sports Health 2022, 15, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Waldhelm, A.; Li, L. Endurance Tests Are the Most Reliable Core Stability Related Measurements. J. Sport Health Sci. 2012, 1, 121–128. [Google Scholar] [CrossRef] [Green Version]
- De Blaiser, C.; Roosen, P.; Willems, T.; Danneels, L.; Bossche, L.V.; De Ridder, R. Is Core Stability a Risk Factor for Lower Extremity Injuries in an Athletic Population? A Systematic Review. Phys. Ther. Sport 2018, 30, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesley, C.A.; Aronson, P.A.; Docherty, C.L. Lower Extremity Landing Biomechanics in Both Sexes after a Functional Exercise Protocol. J. Athl. Train. 2015, 50, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xia, R.; Dai, B.; Sun, X.; Fu, W. Effects of Exercise-Induced Fatigue on Lower Extremity Joint Mechanics, Stiffness, and Energy Absorption during Landings. J. Sport. Sci. Med. 2018, 17, 640–649. [Google Scholar]
- Liederbach, M.; Kremenic, I.J.; Orishimo, K.F.; Pappas, E.; Hagins, M. Comparison of Landing Biomechanics between Male and Female Dancers and Athletes, Part 2: Influence of Fatigue and Implications for Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2014, 42, 1089–1095. [Google Scholar] [CrossRef]
- O’Connor, K.M.; Johnson, C.; Benson, L.C. The Effect of Isolated Hamstrings Fatigue on Landing and Cutting Mechanics. J. Appl. Biomech. 2015, 31, 211–220. [Google Scholar] [CrossRef]
- Fonseca, S.T.; Souza, T.R.; Verhagen, E.; van Emmerik, R.; Bittencourt, N.F.N.; Mendonça, L.D.M.; Andrade, A.G.P.; Resende, R.A.; Ocarino, J.M. Sports Injury Forecasting and Complexity: A Synergetic Approach. Sport. Med. 2020, 50, 1757–1770. [Google Scholar] [CrossRef] [PubMed]
- Marotta, N.; Demeco, A.; de Scorpio, G.; Indino, A.; Iona, T.; Ammendolia, A. Late Activation of the Vastus Medialis in Determining the Risk of Anterior Cruciate Ligament Injury in Soccer Players. J. Sport Rehabil. 2020, 29, 952–955. [Google Scholar] [CrossRef] [PubMed]
- Zebis, M.K.; Andersen, L.L.; Bencke, J.; Kjær, M.; Aagaard, P. Identification of Athletes at Future Risk of Anterior Cruciate Ligament Ruptures by Neuromuscular Screening. Am. J. Sports Med. 2009, 37, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, N.F.N.; Meeuwisse, W.H.; Mendonça, L.D.; Nettel-Aguirre, A.; Ocarino, J.M.; Fonseca, S.T. Complex Systems Approach for Sports Injuries: Moving from Risk Factor Identification to Injury Pattern Recognition—Narrative Review and New Concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef] [Green Version]
Mean ± SD | |
---|---|
Weight (kg) | 74.21 ± 7.90 |
Height (m) | 1.79 ± 0.06 |
BMI (kg/m2) | 23.19 ± 1.80 |
Starting Training Age (years) | 7.77 ± 3.03 |
Competitive playing experience years | 4.00 ± 4.31 |
Training hours/day | 2.31 ± 0.63 |
Training days/week | 5.64 ± 1.06 |
Games played the previous year | 19.33 ± 9.92 |
Injury Percentage | General | Lower Limb | Knee |
---|---|---|---|
LRG (N = 30) | 57.1% | 32.1% | 17.9% |
HRG (N = 61) | 65.0% | 30.0% | 18.3% |
Pearson Chi-Square | 0.50, p = 0.48 | 0.10, p = 0.76 | 0.00, p = 0.96 |
Predictors | B | S.E. | Wald | df | Sig. | Exp (B) |
---|---|---|---|---|---|---|
LESS score | 0.93 | 0.22 | 18.54 | 1.00 | 0.00 | 2.52 |
Prone Bridge | −0.01 | 0.00 | 4.65 | 1.00 | 0.03 | 0.99 |
Constant | −2.91 | 1.15 | 6.42 | 1.00 | 0.01 | 0.06 |
Group | H Strength | Q Strength | SLTH | LESS |
---|---|---|---|---|
Low-risk, N = 4 | 6.74 ± 3.65 | 3.99 ± 1.41 | 1.71 ± 1.28 | 5.83 ± 0.34 |
High-risk N = 16 | 6.74 ± 5.53 | 8.47 ± 6.42 | 6.09 ± 4.49 | 4.69 ± 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsarbou, C.; Liveris, N.I.; Xergia, S.A.; Tsekoura, M.; Fousekis, K.; Tsepis, E. Pre-Season ACL Risk Classification of Professional and Semi-Professional Football Players, via a Proof-of-Concept Test Battery. Appl. Sci. 2023, 13, 7780. https://doi.org/10.3390/app13137780
Tsarbou C, Liveris NI, Xergia SA, Tsekoura M, Fousekis K, Tsepis E. Pre-Season ACL Risk Classification of Professional and Semi-Professional Football Players, via a Proof-of-Concept Test Battery. Applied Sciences. 2023; 13(13):7780. https://doi.org/10.3390/app13137780
Chicago/Turabian StyleTsarbou, Charis, Nikolaos I. Liveris, Sofia A. Xergia, Maria Tsekoura, Konstantinos Fousekis, and Elias Tsepis. 2023. "Pre-Season ACL Risk Classification of Professional and Semi-Professional Football Players, via a Proof-of-Concept Test Battery" Applied Sciences 13, no. 13: 7780. https://doi.org/10.3390/app13137780
APA StyleTsarbou, C., Liveris, N. I., Xergia, S. A., Tsekoura, M., Fousekis, K., & Tsepis, E. (2023). Pre-Season ACL Risk Classification of Professional and Semi-Professional Football Players, via a Proof-of-Concept Test Battery. Applied Sciences, 13(13), 7780. https://doi.org/10.3390/app13137780