Involvement of the Orexinergic System in Cancer: Antitumor Strategies and Future Perspectives
Abstract
:1. Introduction
2. The Orexinergic System: Precursor, Peptides, Receptors, Signaling Pathways, Physiological and Pathophysiological Actions
2.1. Precursor and Peptides
2.2. Receptors
2.3. Signaling Pathways
2.4. Physiological and Pathophysiological Actions
3. Orexins and Cancer
3.1. Acute Lymphoblastic Leukemia
3.2. Adrenocortical Adenoma
3.3. Breast Cancer
3.4. Cervical Cancer
3.5. Colon Cancer
3.6. Endometrial Cancer
3.7. Gastric Cancer
3.8. Glioma
3.9. Head and Neck Cancer
3.10. Hepatocellular Carcinoma
3.11. Neuroblastoma
3.12. Pancreatic Cancer
3.13. Prostate Cancer
3.14. Circadian Rhythm and Cancer
4. Therapeutic Strategies and Future Directions
4.1. OXR Agonists and OXR Antagonists
4.2. OXRs Dimerization/Oligomerization
4.3. Epigenetic Mechanisms
4.4. Orexins and Chemotherapeutic Drugs
4.5. Other Research Lines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Couvineau, A.; Nicole, P.; Gratio, V.; Voisin, T. The Orexin receptors: Structural and anti-tumoral properties. Front. Endocrinol. 2022, 13, 931970. [Google Scholar] [CrossRef] [PubMed]
- Bonini, J.A.; Jones, K.A.; Adham, N.; Forray, C.; Artymyshyn, R.; Durkin, M.M.; Smith, K.E.; Tamm, J.A.; Boteju, L.W.; Lakhlani, P.P.; et al. Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J. Biol. Chem. 2000, 275, 39324–39331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotter, A.L.; Webber, A.L.; Coleman, P.J.; Renger, J.J.; Winrow, C.J. International union of basic and clinical pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology. Pharmacol. Rev. 2012, 64, 389–420. [Google Scholar] [CrossRef] [PubMed]
- Mogavero, M.P.; Silvani, A.; DelRosso, L.M.; Salemi, M.; Ferri, R. Focus on the complex interconnection between cancer, narcolepsy and other neurodegenerative diseases: A possible case of orexin-dependent inverse comorbidity. Cancers 2021, 13, 2612. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.E.; Ganz, P.A.; Irwin, M.R.; Kwan, L.; Breen, E.C.; Cole, S.W. Inflammation and behavioral symptoms after breast cancer treatment: Do fatigue, depression, and sleep disturbance share a common underlying mechanism? J. Clin. Oncol. 2011, 29, 3517–3522. [Google Scholar] [CrossRef] [Green Version]
- Ryan, S.; Taylor, C.T.; McNicholas, W.T. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 2005, 112, 2660–2667. [Google Scholar] [CrossRef] [Green Version]
- Campos-Rodriguez, F.; Martinez-Garcia, M.A.; Martinez, M.; Duran-Cantolla, J.; Peña, M.L.; Masdeu, M.J.; Gonzalez, M.; Campo, F.; Gallego, I.; Marin, J.M.; et al. Spanish Sleep Network. Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am. J. Respir. Crit. Care Med. 2013, 187, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Hakim, F.; Wang, Y.; Zhang, S.X.; Zheng, J.; Yolcu, E.S.; Carreras, A.; Khalyfa, A.; Shirwan, H.; Almendros, I.; Gozal, D. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res. 2014, 74, 1329–1337. [Google Scholar] [CrossRef] [Green Version]
- Mogavero, M.P.; DelRosso, L.M.; Fanfulla, F.; Bruni, O.; Ferri, R. Sleep disorders and cancer: State of the art and future perspectives. Sleep Med. Rev. 2021, 56, 101409. [Google Scholar] [CrossRef]
- Dycke, K.C.G.V.; Nijman, R.M.; Wackers, P.F.K.; Jonker, M.J.; Rodenburg, W.; van Oostrom, C.T.M.; Salvatori, D.C.F.; Breit, T.M.; van Steeg, H.; Luijten, M.; et al. A day and night difference in the response of the hepatic transcriptome to cyclophosphamide treatment. Arch. Toxicol. 2015, 89, 221–231. [Google Scholar] [CrossRef]
- Walker, W.H., 2nd; Borniger, J.C. Molecular mechanisms of cancer-induced sleep disruption. Int. J. Mol. Sci. 2019, 20, 2780. [Google Scholar] [CrossRef] [Green Version]
- Voisin, T.; Firar, A.E.; Avondo, V.; Laburthe, M. Orexin-induced apoptosis: The key role of the seven-transmembrane domain orexin type 2 receptor. Endocrinology 2006, 147, 4977–4984. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.-R.; Yang, Y.; Ward, R.; Gao, L.; Liu, Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cell Signal. 2013, 25, 2413–2423. [Google Scholar] [CrossRef]
- Couvineau, A.; Voisin, T.; Nicole, P.; Gratio, V.; Blais, A. Orexins: A promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. World J. Gastroenterol. 2021, 27, 7582–7596. [Google Scholar] [CrossRef]
- Couvineau, A.; Nicole, P.; Gratio, V.; Voisin, T. Orexins/hypocretins and cancer: A neuropeptide as emerging target. Molecules 2021, 26, 4849. [Google Scholar] [CrossRef]
- Couvineau, A.; Dayot, S.; Nicole, P.; Gratio, V.; Rebours, V.; Couvelard, A.; Voisin, T. The anti-tumoral properties of orexin/hypocretin hypothalamic neuropeptides: An unexpected therapeutic role. Front. Endocrinol. 2018, 9, 573. [Google Scholar] [CrossRef] [Green Version]
- Laburthe, M.; Voisin, T.; El Firar, A. Orexins/hypocretins and orexin receptors in apoptosis: A mini-review. Acta Physiol. 2010, 198, 393–402. [Google Scholar] [CrossRef]
- Kukkonen, J.P.; Leonard, C.S. Orexin/hypocretin receptor signalling cascades. Br. J. Pharmacol. 2014, 171, 314–331. [Google Scholar] [CrossRef] [Green Version]
- Voisin, T.; Nicole, P.; Gratio, V.; Chassac, A.; Mansour, D.; Rebours, V.; Couvelard, A.; Couvineau, A. The orexin-A/OX1R system induces cell death in pancreatic cancer cells resistant to gemcitabine and nab-paclitaxel treatment. Front. Oncol. 2022, 12, 904327. [Google Scholar] [CrossRef]
- Lee, J.H.; Bang, E.; Chae, K.J.; Kim, J.Y.; Lee, D.W.; Lee, W. Solution structure of a new hypothalamic neuropeptide, human hypocretin-2/orexin-B. Eur. J. Biochem. 1999, 266, 831–839. [Google Scholar] [CrossRef]
- Soya, S.; Sakurai, T. Evolution of orexin neuropeptide system: Structure and function. Front. Neurosci. 2020, 14, 691. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Söll, R.M.; Dürrenberger, F.; Dautzenberg, F.M.; Beck-Sickinger, A.G. Structure-activity studies of orexin a and orexin B at the human orexin 1 and orexin 2 receptors led to orexin 2 receptor selective and orexin 1 receptor preferring ligands. J. Med. Chem. 2004, 47, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Nicole, P.; Couvineau, P.; Jamin, N.; Voisin, T.; Couvineau, A. Crucial role of the orexin-B C-terminus in the induction of OX1 receptor-mediated apoptosis: Analysis by alanine scanning, molecular modelling and site-directed mutagenesis. Br. J. Pharmacol. 2015, 172, 5211–5223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ericson, M.D.; Haskell-Luevano, C. A review of single-nucleotide polymorphisms in orexigenic neuropeptides targeting G protein-coupled receptors. ACS Chem. Neurosci. 2018, 9, 1235–1246. [Google Scholar] [CrossRef]
- De Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S., 2nd; et al. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 1998, 95, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richarson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef] [Green Version]
- Sagi, D.; de Lecea, L.; Appelbaum, L. Heterogeneity of hypocretin/orexin neurons. Front. Neurol. Neurosci. 2021, 45, 61–74. [Google Scholar] [CrossRef]
- Kirchgessner, A.L. Orexins in the brain-gut axis. Endocr. Rev. 2002, 23, 1–15. [Google Scholar] [CrossRef]
- Ahmed, N.; Mattu, H.S.; Randeva, H.S. Orexins. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.B., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 1032–1037. [Google Scholar]
- Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.A.; Motoshima, H.; Fox, B.A.; Le Trong, I.; Teller, D.C.; Okada, T.; Stenkamp, R.E.; et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Voisin, T.; Rouet-Benzineb, P.; Reuter, N.; Laburthe, M. Orexins and their receptors: Structural aspects and role in peripheral tissues. Cell Mol. Life Sci. 2003, 60, 72–87. [Google Scholar] [CrossRef]
- Wong, K.K.Y.; Ng, S.Y.L.; Lee, L.T.O.; Ng, H.K.H.; Chow, B.K.C. Orexins and their receptors from fish to mammals: A comparative approach. Gen. Comp. Endocrinol. 2011, 171, 124–130. [Google Scholar] [CrossRef]
- Rajagopal, S.; Rajagopal, K.; Lefkowitz, R.J. Teaching old receptors new tricks: Biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 2010, 9, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Couvineau, A.; Voisin, T.; Nicole, P.; Gratio, V.; Abad, C.; Tan, Y.-V. Orexins as novel therapeutic targets in inflammatory and neurodegenerative diseases. Front. Endocrinol. 2019, 10, 709. [Google Scholar] [CrossRef]
- Bulenger, S.; Marullo, S.; Bouvier, M. Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol. Sci. 2005, 26, 131–137. [Google Scholar] [CrossRef]
- Milligan, G. G protein-coupled receptor hetero-dimerization: Contribution to pharmacology and function. Br. J. Pharmacol. 2009, 158, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.-R.; Ward, R.J.; Pediani, J.D.; Milligan, G. Intramolecular fluorescence resonance energy transfer (FRET) sensors of the orexin OX1 and OX2 receptors identify slow kinetics of agonist activation. J. Biol. Chem. 2012, 287, 14937–14949. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Tena-Sempere, M.; Diéguez, C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front. Neuroendocrinol. 2009, 31, 113–127. [Google Scholar] [CrossRef]
- Sakurai, T. The role of orexin in motivated behaviours. Nat. Rev. Neurosci. 2014, 15, 719–731. [Google Scholar] [CrossRef]
- Gao, X.B.; Horvath, T. Function and dysfunction of hypocretin/orexin: An energetics point of view. Annu. Rev. Neurosci. 2014, 37, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Li, S.B.; de Lecea, L. The hypocretin (orexin) system: From a neural circuitry perspective. Neuropharmacology 2020, 167, 107993. [Google Scholar] [CrossRef]
- López, M.; de Lecea, L.; Diéguez, C. Editorial: Hypocretins/orexins. Front. Neuroendocrinol. 2020, 11, 357. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, E.; Mochizuki, T.; Scammell, T.E. Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol. 2010, 198, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.-J.; van den Pol, A.N.; Aghajanian, G.K. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J. Neurosci. 2002, 22, 9453–9464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgin, P.; Huitrón-Résendiz, S.; Spier, A.D.; Fabre, V.; Morte, B.; Criado, J.R.; Sutcliffe, J.G.; Henriksen, S.J.; de Lecea, L. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J. Neurosci. 2000, 20, 7760–7765. [Google Scholar] [CrossRef] [Green Version]
- Hagan, J.J.; Leslie, R.A.; Patel, S.; Evans, M.L.; Wattam, T.A.; Holmes, S.; Benham, C.D.; Taylor, S.G.; Routledge, C.; Hemmati, P.; et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. USA 1999, 96, 10911–10916. [Google Scholar] [CrossRef] [Green Version]
- Selbach, O.; Doreulee, N.; Bohla, C.; Eriksson, K.S.; Sergeeva, O.A.; Poelchen, W.; Brown, R.E.; Haas, H.L. Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling. Neuroscience 2004, 127, 519–528. [Google Scholar] [CrossRef]
- Borgland, S.L.; Taha, S.A.; Sarti, F.; Fields, H.L.; Bonci, A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 2006, 49, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Selbach, O.; Bohla, C.; Barbara, A.; Doreulee, N.; Eriksson, K.S.; Sergeeva, O.A.; Haas, H.L. Orexins/hypocretins control bistability of hippocampal long-term synaptic plasticity through co-activation of multiple kinases. Acta Physiol. 2010, 198, 277–285. [Google Scholar] [CrossRef]
- Leonard, C.S.; Kukkonen, J.P. Orexin/hypocretin receptor signalling: A functional perspective. Br. J. Pharmacol. 2013, 171, 294–313. [Google Scholar] [CrossRef]
- Kilduff, T.S.; Bowersox, S.S.; Kaitin, K.I.; Baker, T.L.; Ciaranello, R.D.; Dement, W.C. Muscarinic cholinergic receptors and the canine model of narcolepsy. Sleep 1986, 9, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Kalogiannis, M.; Grupke, S.L.; Potter, P.E.; Edwards, J.G.; Chemelli, R.M.; Kisanuki, Y.Y.; Yanagisawa, M.; Leonard, C.S. Narcoleptic orexin receptor knockout mice express enhanced cholinergic properties in laterodorsal tegmental neurons. Eur. J. Neurosci. 2010, 32, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Wang, H.; Wang, H.; Wang, D.; Zhang, Z.; Wei, R.; Gao, X.; Zhang, R.; Wang, C.; Chen, J. A novel phosphorylation site on orexin receptor 1 regulating orexinA-induced GRK2-biased signaling. Cell Signal. 2020, 75, 109743. [Google Scholar] [CrossRef]
- Yin, J.; Rosenbaum, D.M. The human orexin/hypocretin receptor crystal structures. Curr. Top. Behav. Neurosci. 2017, 33, 1–15. [Google Scholar] [CrossRef]
- Sellayah, D.; Bharaj, P.; Sikder, D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab. 2011, 14, 478–490. [Google Scholar] [CrossRef] [Green Version]
- Bilir, C.; Engin, H.; Can, M.; Temi, Y.B.; Demirtas, D. The prognostic role of inflammation and hormones in patients with metastatic cancer with cachexia. Med. Oncol. 2015, 32, 56. [Google Scholar] [CrossRef]
- Malendowicz, W.; Szyszka, M.; Ziolkowska, A.; Rucinski, M.; Kwias, Z. Elevated expression of orexin receptor 2 (HCRTR2) in benign prostatic hyperplasia is accompanied by lowered serum orexin A concentrations. Int. J. Mol. Med. 2011, 27, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Dehan, P.; Canon, C.; Trooskens, G.; Rehli, M.; Munaut, C.; Van Criekinge, W.; Delvenne, P. Expression of type 2 orexin receptor in human endometrium and its epigenetic silencing in endometrial cancer. J. Clin. Endocrinol. Metab. 2013, 98, 1549–1557. [Google Scholar] [CrossRef] [Green Version]
- Miyano, K.; Ohshima, K.; Suzuki, N.; Furuya, S.; Yoshida, Y.; Nonaka, M.; Higami, Y.; Yoshizawa, K.; Fujii, H.; Uezono, Y. Japanese herbal medicine ninjinyoeito mediates its orexigenic properties partially by activating orexin 1 receptors. Front. Nutr. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Voisin, T.; El Firar, A.; Fasseu, M.; Rouyer-Fessard, C.; Descatoire, V.; Walker, F.; Paradis, V.; Bedossa, P.; Henin, D.; Lehy, T.; et al. Aberrant expression of OX1 receptors for orexins in colon cancers and liver metastases: An openable gate to apoptosis. Cancer Res. 2011, 71, 3341–3351. [Google Scholar] [CrossRef] [Green Version]
- Weis, W.I.; Kobilka, B.K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 2018, 87, 897–919. [Google Scholar] [CrossRef]
- Kukkonen, J.P.; Turunen, P.M. Cellular signaling mechanisms of hypocretin/orexin. Front. Neurol. Neurosci. 2021, 45, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Kukkonen, J.P. Orexin/hypocretin signaling. Curr. Top. Behav. Neurosci. 2016, 33, 17–50. [Google Scholar] [CrossRef]
- Ekholm, M.E.; Johansson, L.; Kukkonen, J.P. IP3-independent signalling of OX1 orexin/hypocretin receptors to Ca2+ influx and ERK. Biochem. Biophys. Res. Commun. 2007, 353, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Kohlmeier, K.A.; Inoue, T.; Leonard, C.S. Hypocretin/orexin peptide signaling in the ascending arousal system: Elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum. J. Neurophysiol. 2004, 92, 221–235. [Google Scholar] [CrossRef]
- Acuna-Goycolea, C.; van den Pol, A.N. Neuroendocrine proopiomelanocortin neurons are excited by hypocretin/orexin. J. Neurosci. 2009, 29, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Borgland, S.L.; Storm, E.; Bonci, A. Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur. J. Neurosci. 2008, 28, 1545–1556. [Google Scholar] [CrossRef]
- Tang, J.; Chen, J.; Ramanjaneya, M.; Punn, A.; Conner, A.C.; Randeva, H.S. The signalling profile of recombinant human orexin-2 receptor. Cell Signal. 2008, 20, 1651–1661. [Google Scholar] [CrossRef]
- Karteris, E.; Randeva, H.S.; Grammatopoulos, D.K.; Jaffe, R.B.; Hillhouse, E.W. Expression and coupling characteristics of the crh and orexin type 2 receptors in human fetal adrenals. J. Clin. Endocrinol. Metab. 2001, 86, 4512–4519. [Google Scholar] [CrossRef]
- Randeva, H.S.; Karteris, E.; Grammatopoulos, D.; Hillhouse, E.W. Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: Implications for adrenal function and energy homeostasis. J. Clin. Endocrinol. Metab. 2001, 86, 4808–4813. [Google Scholar] [CrossRef]
- Berrendero, F.; Flores, A.; Robledo, P. When orexins meet cannabinoids: Bidirectional functional interactions. Biochem. Pharmacol. 2018, 157, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Roh, S.G.; Gong, C.; Hernandez, M.; Ueta, Y.; Chen, C. Orexin-B augments voltage-gated L-type Ca(2+) current via protein kinase C-mediated signalling pathway in ovine somatotropes. Neuroendocrinology 2003, 77, 141–152. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Q.; Yan, M.; Hernandez, M.; Gong, C.; Boon, W.C.; Murata, Y.; Ueta, Y.; Chen, C. Orexin-A augments voltage-gated Ca2+ currents and synergistically increases growth hormone (GH) secretion with GH-releasing hormone in primary cultured ovine somatotropes. Endocrinology 2002, 143, 4609–4619. [Google Scholar] [CrossRef] [Green Version]
- Mieda, M.; Yanagisawa, M. Sleep, feeding, and neuropeptides: Roles o orexins and orexin receptors. Curr. Opin. Neurobiol. 2002, 12, 339–345. [Google Scholar] [CrossRef]
- Milbank, E.; López, M. Orexins/hypocretins: Key regulators of energy homeostasis. Front. Endocrinol. 2019, 10, 830. [Google Scholar] [CrossRef]
- Barson, J.R. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res. 2020, 1731, 145915. [Google Scholar] [CrossRef]
- Barson, J.R.; Leibowitz, S.F. Orexin/Hypocretin system: Role in food and drug overconsumption. Int. Rev. Neurobiol. 2017, 136, 199–237. [Google Scholar] [CrossRef] [Green Version]
- Arrigoni, E.; Chee, M.J.S.; Fuller, P.M. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019, 154, 34–49. [Google Scholar] [CrossRef]
- Nurmio, M.; Tena-Sempere, M.; Toppari, J. Orexins and the regulation of the hypothalamic-pituitary-testicular axis. Acta Physiol. 2010, 198, 349–354. [Google Scholar] [CrossRef]
- Spinazzi, R.; Rucinski, M.; Neri, G.; Malendowicz, L.K.; Nussdorfer, G.G. Preproorexin and orexin receptors are expressed in cortisol-secreting adrenocortical adenomas, and orexins stimulate in vitro cortisol secretion and growth of tumor cells. J. Clin. Endocrinol. Metab. 2005, 90, 3544–3549. [Google Scholar] [CrossRef] [Green Version]
- Mazzocchi, G.; Malendowicz, L.K.; Aragona, F.; Rebuffat, P.; Gottardo, L.; Nussdorfer, G.G. Human pheochromocytomas express orexin receptor type 2 gene and display an in vitro secretory response to orexins a and b. J. Clin. Endocrinol. Metab. 2001, 86, 4818–4821. [Google Scholar] [CrossRef]
- Graybill, N.L.; Weissig, V. A review of orexin’s unprecedented potential as a novel, highly-specific treatment for various localized and metastatic cancers. SAGE Open Med. 2017, 5, 2050312117735774. [Google Scholar] [CrossRef] [PubMed]
- Kishida, M.; Ishige, K.; Horibe, T.; Tada, N.; Koibuchi, N.; Shoda, J.; Kita, K.; Kawakami, K. Orexin 2 receptor as a potential target for immunotoxin and antibody-drug conjugate cancer therapy. Oncol Lett. 2012, 3, 525–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kram, D.E.; Krasnow, S.M.; Levasseur, P.R.; Zhu, X.; Stork, L.C.; Marks, D.L. Dexamethasone chemotherapy does not disrupt orexin signaling. PLoS ONE 2016, 11, e0168731. [Google Scholar] [CrossRef] [PubMed]
- Skoczeń, S.; Tomasik, P.; Balwierz, W.; Surmiak, M.; Sztefko, K.; Galicka-Latała, D. Markers of metabolic syndrome and peptides regulating metabolism in survivors of childhood acute lymphoblastic leukemia. Prz. Lek. 2011, 68, 592–596. [Google Scholar]
- Blanco, M.; García-Caballero, T.; Fraga, M.; Gallego, R.; Cuevas, J.; Forteza, J.; Beiras, A.; Diéguez, C. Cellular localization of orexin receptors in human adrenal gland, adrenocortical adenomas and pheochromocytomas. Regul. Pept. 2002, 104, 161–165. [Google Scholar] [CrossRef]
- Nanmoku, T.; Isobe, K.; Sakurai, T.; Yamanaka, A.; Takekoshi, K.; Kawakami, Y.; Ishii, K.; Goto, K.; Nakai, T. Orexins suppress catecholamine synthesis and secretion in cultured PC12 cells. Biochem. Biophys. Res. Commun. 2000, 274, 310–315. [Google Scholar] [CrossRef]
- Wenzel, J.; Grabinski, N.; Knopp, C.A.; Dendorfer, A.; Ramanjaneya, M.; Randeva, H.S.; Ehrhart-Bornstein, M.; Dominiak, P.; Johren, O. Hypocretin/orexin increases the expression of steroidogenic enzymes in human adrenocortical NCI H295R cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R1601–R1609. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Zhao, Y.; Ju, S.; Guo, L. Orexin-A stimulates 3β-hydroxysteroid dehydrogenase expression and cortisol production in H295R human adrenocortical cells through the AKT pathway. Int. J. Mol. Med. 2014, 34, 1523–1528. [Google Scholar] [CrossRef] [Green Version]
- Borniger, J.C.; Walker Ii, W.H.; Surbhi, I.; Emmer, K.M.; Zhang, N.; Zalenski, A.A.; Muscarella, S.L.; Fitzgerald, J.A.; Smith, A.N.; Braam, J.C.; et al. A role for hypocretin/orexin in metabolic and sleep abnormalities in a mouse model of non-metastatic breast cancer. Cell Metab. 2018, 28, 118–129.e5. [Google Scholar] [CrossRef] [Green Version]
- Taximaimaiti, R.; Abuliken, X.; Maihemuti, M.; Abudujilile, D.; Abudulimu, H. Elevated expression of OX2R in cervical cancers and placentas of Uyghur women in Xinjiang, China. Asian Pac. J. Cancer Prev. 2016, 17, 4959–4963. [Google Scholar] [CrossRef]
- Rouet-Benzineb, P.; Rouyer-Fessard, C.; Jarry, A.; Avondo, V.; Pouzet, C.; Yanagisawa, M.; Laboisse, C.; Laburthe, M.; Voisin, T. Orexins acting at native OX(1) receptor in colon cancer and neuroblastoma cells or at recombinant OX(1) receptor suppress cell growth by inducing apoptosis. J. Biol. Chem. 2004, 279, 45875–45886. [Google Scholar] [CrossRef] [Green Version]
- Laburthe, M.; Voisin, T. The orexin receptor OX(1)R in colon cancer: A promising therapeutic target and a new paradigm in G protein-coupled receptor signalling through ITIMs. Br. J. Pharmacol. 2012, 165, 1678–1687. [Google Scholar] [CrossRef] [Green Version]
- Voisin, T.; El Firar, A.; Rouyer-Fessard, C.; Gratio, V.; Laburthe, M. A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: A novel mechanism. FASEB J. 2008, 22, 1993–2002. [Google Scholar] [CrossRef] [Green Version]
- El Firar, A.; Voisin, T.; Rouyer-Fessard, C.; Ostuni, M.A.; Couvineau, A.; Laburthe, M. Discovery of a functional immunoreceptor tyrosine-based switch motif in a 7-transmembrane-spanning receptor: Role in the orexin receptor OX1R-driven apoptosis. FASEB J. 2009, 23, 4069–4080. [Google Scholar] [CrossRef]
- Wen, J.; Chang, X.; Bai, B.; Gao, Q.; Zhao, Y. Orexin A suppresses the expression of exosomal PD-L1 in colon cancer and promotes T cell activity by inhibiting JAK2/STAT3 signaling pathway. Dig. Dis. Sci. 2022, 67, 2173–2181. [Google Scholar] [CrossRef]
- Bai, B.; Chen, X.; Zhang, R.; Wang, X.; Jiang, X.; Li, D.; Wang, Z.; Chen, K. Dual-agonist occupancy of orexin receptor 1 and cholecystokinin A receptor heterodimers decreases G-protein-dependent signaling and migration in the human colon cancer cell line HT-29. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1153–1164. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, Y.; Guo, L. Orexin A induces autophagy in HCT-116 human colon cancer cells through the ERK signaling pathway. Int. J. Mol. Med. 2016, 37, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Messal, N.; Fernandez, N.; Dayot, S.; Gratio, V.; Nicole, P.; Prochasson, C.; Chantret, I.; LeGuilloux, G.; Jarry, A.; Couvelard, A.; et al. Ectopic expression of OX1R in ulcerative colitis mediates anti-inflammatory effect of orexin-A. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 3618–3628. [Google Scholar] [CrossRef]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Zhao, Y.; Shen, Y.; Guo, L. Effect of orexin A on apoptosis in BGC-823 gastric cancer cells via OX1R through the AKT signaling pathway. Mol. Med. Rep. 2015, 11, 3439–3444. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, Y.; Ju, S.; Guo, L. Orexin A upregulates the protein expression of OX1R and enhances the proliferation of SGC-7901 gastric cancer cells through the ERK signaling pathway. Int. J. Mol. Med. 2015, 35, 539–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Niu, J.; Zhang, R.; Li, X.; Luo, M.; Sang, T.; Guo, J.; Liu, J.; Ding, X.; Li, X.; et al. Orexin A associates with inflammation by interacting with OX1R/OX2R receptor and activating prepro-Orexin in cancer tissues of gastric cancer patients. Gastroenterol. Hepatol. 2020, 43, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Torres-Román, A.L.; Rodríguez-Flores, K.L.; Hernández-Mora, V.M.; Ruiz-García, E.; Prospero-García, O.; Guijosa, A.; Molina, A.; Morales-Mulia, M.; Aschner, M.; Santamaría, A.; et al. Examining the role of histaminergic, orexinergic, and cannabinergic systems in redox regulation in gastric adenocarcinoma. Mini Rev. Med. Chem. 2023; ahead of the print. [Google Scholar] [CrossRef]
- Biegańska, K.; Sokołowska, P.; Jöhren, O.; Zawilska, J.B. Orexin A suppresses the growth of rat C6 glioma cells via a caspase-dependent mechanism. J. Mol. Neurosci. 2012, 48, 706–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nokura, K.; Kanbayashi, T.; Ozeki, T.; Koga, H.; Zettsu, T.; Yamamoto, H.; Ozaki, N.; Shimizu, T.; Kawase, T. Hypersomnia, asterixis and cataplexy in association with orexin A-reduced hypothalamic tumor. J. Neurol. 2004, 251, 1534–1535. [Google Scholar] [CrossRef]
- Misawa, K.; Mima, M.; Imai, A.; Mochizuki, D.; Misawa, Y.; Endo, S.; Ishikawa, R.; Kanazawa, T.; Mineta, H. The neuropeptide genes SST, TAC1, HCRT, NPY, and GAL are powerful epigenetic biomarkers in head and neck cancer: A site-specific analysis. Clin. Epigenetics 2018, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhao, Y.; Guo, J. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism. Mol. Cell Endocrinol. 2016, 420, 208–216. [Google Scholar] [CrossRef]
- Pu, C.; Tian, S.; He, S.; Chen, W.; He, Y.; Ren, H.; Zhu, J.; Tang, J.; Huang, X.; Xiang, Y.; et al. Depression and stress levels increase risk of liver cancer through epigenetic downregulation of hypocretin. Genes Dis. 2020, 9, 1024–1037. [Google Scholar] [CrossRef]
- Tsuneki, T.; Maeda, T.; Takata, S.; Sugiyama, M.; Otsuka, K.; Ishizuka, H.; Onogi, Y.; Tokai, E.; Koshida, C.; Kon, K.; et al. Hypothalamic orexin prevents non-alcoholic steatohepatitis and hepatocellular carcinoma in obesity. Cell Rep. 2022, 41, 111497. [Google Scholar] [CrossRef]
- Wan, X.; Liu, Y.; Zhao, Y.; Sun, X.; Fan, D.; Guo, L. Orexin A affects HepG2 human hepatocellular carcinoma cells glucose metabolism via HIF-1α-dependent and -independent mechanism. PLoS ONE 2017, 12, e0184213. [Google Scholar] [CrossRef] [Green Version]
- Arihara, Z.; Takahashi, K.; Murakami, O.; Totsune, K.; Sone, M.; Satoh, F.; Ito, S.; Hayashi, Y.; Sasano, H.; Mouri, T. Orexin-A in the human brain and tumor tissues of ganglioneuroblastoma and neuroblastoma. Peptides 2000, 21, 565–570. [Google Scholar] [CrossRef]
- Ammoun, S.; Lindholm, D.; Wootz, H.; Akerman, K.E.; Kukkonen, J.P. G-protein-coupled OX1 orexin/hcrtr-1 hypocretin receptors induce caspase-dependent and -independent cell death through p38 mitogen-/stress-activated protein kinase. J. Biol. Chem. 2006, 281, 834–842. [Google Scholar] [CrossRef] [Green Version]
- Pasban-Aliabadi, H.; Esmaeili-Mahani, S.; Abbasnejad, M. Orexin-A protects human neuroblastoma SH-SY5Y cells against 6-hydroxydopamine-induced neurotoxicity: Involvement of PKC and PI3K signaling pathways. Rejuvenation Res. 2017, 20, 125–133. [Google Scholar] [CrossRef]
- Esmaeili-Mahani, S.; Vazifekhah, S.; Pasban-Aliabadi, H.; Abbasnejad, M.; Sheibani, V. Protective effect of orexin-A on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. Neurochem. Int. 2013, 63, 719–725. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, T.; Li, X.-Q.; Liu, Y.; Zhu, X.-Y.; Jankovic, J.; Pan, T.-H.; Wu, Y.-C. Neuroprotection by Orexin-A via HIF-1α induction in a cellular model of Parkinson’s disease. Neurosci. Lett. 2014, 579, 35–40. [Google Scholar] [CrossRef]
- Louhivuori, L.M.; Jansson, L.; Nordström, T.; Bart, G.; Näsman, J.; Akerman, K.E.O. Selective interference with TRPC3/6 channels disrupts OX1 receptor signalling via NCX and reveals a distinct calcium influx pathway. Cell Calcium 2010, 48, 114–123. [Google Scholar] [CrossRef]
- Nasman, J.; Bart, G.; Larsson, K.; Louhivuori, L.; Peltonen, H.; Akerman, K.E.O. The orexin OX1 receptor regulates Ca2+ entry via diacylglycerol-activated channels in differentiated neuroblastoma cells. J. Neurosci. 2006, 26, 10658–10666. [Google Scholar] [CrossRef] [Green Version]
- Suo, L.; Chang, X.; Zhao, Y. The orexin-A-regulated Akt/mTOR pathway promotes cell proliferation through inhibiting apoptosis in pancreatic cancer cells. Front. Endocrinol. 2018, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Dayot, S.; Speisky, D.; Couvelard, A.; Bourgoin, P.; Gratio, V.; Cros, J.; Rebours, V.; Sauvanet, A.; Bedossa, P.; Paradis, P.; et al. In vitro, in vivo and ex vivo demonstration of the antitumoral role of hypocretin-1/orexin-A and almorexant in pancreatic ductal adenocarcinoma. Oncotarget 2018, 9, 6952–6967. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Suo, L.; Xu, N.; Zhao, Y. Orexin-A stimulates insulin secretion through the activation of the ox1 receptor and mammalian target of rapamycin in rat insulinoma cells. Pancreas 2019, 48, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Basar, M.M.; Han, U.; Cakan, M.; Alpcan, S.; Basar, K. Orexin expression in different prostate histopathologic examinations: Can it be a marker for prostate cancer? A preliminary result. Turk. J. Urol. 2013, 39, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Szyszka, M.; Paschke, L.; Tyczewska, M.; Rucinski, M.; Grabowska, P.; Malendowicz, L.K. Lack of expression of preproorexin and orexin receptors genes in human normal and prostate cancer cell lines. Folia Histochem. Cytobiol. 2015, 53, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Valiante, S.; Liguori, G.; Tafuri, S.; Pavone, L.M.; Campese, R.; Monaco, R.; Iachetta, G.; Assisi, L.; Mirabella, N.; Forte, M.; et al. Expression and potential role of the peptide orexin-A in prostate cancer. Biochem. Biophys. Res. Commun. 2015, 464, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, D.; Hautot, C.; Mehio, M.; Jeandel, L.; Courel, M.; Voisin, T.; Couvineau, A.; Gobet, F.; Leprince, J.; Pfister, C.; et al. The orexin type 1 receptor is overexpressed in advanced prostate cancer with a neuroendocrine differentiation, and mediates apoptosis. Eur. J. Cancer 2014, 50, 2126–2133. [Google Scholar] [CrossRef]
- Valiante, S.; Liguori, G.; Tafuri, S.; Campese, R.; Monaco, R.; Paino, S.; Laforgia, V.; Staiano, N.; Vittoria, A. Expression of orexin A and its receptor 1 in the human prostate. J. Anat. 2013, 222, 473–480. [Google Scholar] [CrossRef]
- Chartrel, N.; Anouar, Y.; Jeandel, L.; Alexandre, D.; Leprince, J.; Couvineau, A.; Voisin, T. Methods and Pharmaceutical Compositions Using Orexins (OXA, OXB) for the Treatment of Prostate Cancers. U.S. Patent Application WO2016087889A1, 3 December 2014. [Google Scholar]
- Ozturk, N.; Ozturk, D.; Kavakli, L.H.; Okyar, A. Molecular aspects of circadian pharmacology and relevande for cancer chronotherapy. Int. J. Mol. Sci. 2017, 18, 2168. [Google Scholar] [CrossRef] [Green Version]
- GLOBOCAN Database. Available online: https://gco.iarc.fr/ (accessed on 27 May 2023).
- Yukitake, H.; Fujimoto, T.; Ishikawa, T.; Suzuki, A.; Shimizu, Y.; Rikimaru, K.; Ito, M.; Suzuki, M.; Kimura, H. TAK-925, an orexin 2 receptor-selective agonist, shows robust wake-promoting effects in mice. Pharmacol. Biochem. Behav. 2019, 187, 172794. [Google Scholar] [CrossRef]
- Nagahara, T.; Saitoh, T.; Kutsumura, N.; Irukayama-Tomobe, Y.; Ogawa, Y.; Kuroda, D.; Gouda, H.; Kumagai, H.; Fujii, H.; Yanagisawa, M.; et al. Design and synthesis of non-peptide, selective orexin receptor 2 agonists. J. Med. Chem. 2015, 58, 7931–7937. [Google Scholar] [CrossRef]
- Thorpy, M.J. Recently approved and upcoming treatments for narcolepsy. CNS Drugs 2020, 34, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Smart, D.; Sabido-David, C.; Brough, S.J.; Jewitt, F.; Johns, A.; Porter, R.A.; Jerman, J.C. SB-334867-A: The first selective orexin-1 receptor antagonist. Br. J. Pharmacol. 2001, 132, 1179–1182. [Google Scholar] [CrossRef] [Green Version]
- Bonaventure, P.; Shelton, J.; Yun, S.; Nepomuceno, D.; Sutton, S.; Aluisio, L.; Fraser, I.; Lord, B.; Shoblock, J.; Welty, N.; et al. Characterization of JNJ-42847922, a selective orexin-2 receptor antagonist, as a clinical candidate for the treatment of insomnia. J. Pharmacol. Exp. Ther. 2015, 354, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Brisbare-Roch, C.; Dingemanse, J.; Koberstein, R.; However, P.; Aissaoui, H.; Flores, S.; Mueller, C.; Nayler, O.; van Gerven, J.; de Haas, S.L.; et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat. Med. 2007, 13, 150–155. [Google Scholar] [CrossRef]
- Cox, C.D.; Breslin, M.J.; Whitman, D.B.; Schreier, J.D.; McGaughey, G.B.; Bogusky, M.J.; Roecker, A.J.; Mercer, S.P.; Bednar, R.A.; Lemaire, W.; et al. Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J. Med. Chem. 2010, 53, 5320–5332. [Google Scholar] [CrossRef]
- Scott, L.J. Lemborexant: First approval. Drugs 2020, 80, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Dauvilliers, Y.; Zammit, G.; Fietze, I.; Mayleben, D.; Seboek Kinter, D.; Pain, S.; Hedner, J. Daridorexant, a new dual orexin receptor antagonist to treat insomnia disorder. Ann. Neurol. 2020, 87, 347–356. [Google Scholar] [CrossRef]
- Lee, J.; Reddy, M.; Kodadek, T. Discovery of an orexin receptor positive potentiator. Chem. Sci. 2010, 1, C0SC00197J. [Google Scholar] [CrossRef]
- Bridges, T.M.; Lindsley, C.W. G-protein-coupled receptors: From classical modes of modulation to allosteric mechanisms. ACS Chem. Biol. 2008, 3, 530–541. [Google Scholar] [CrossRef]
- Conn, P.J.; Christopoulos, A.; Lindsley, C.W. Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 2009, 8, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Wang, H.; Gong, Y. Prevention of cisplatin-induced nausea and vomiting by seabuckthorn (Hippophae rhamnoides L.) seed oil: Insights at the level of orexin-A in rats. Iran J. Basic Med. Sci. 2021, 24, 248–255. [Google Scholar] [CrossRef]
- Jo, J.; Kim, J.-Y.; Leem, J. Protective effects of orexin a in a murine model of cisplatin-induced acute kidney injury. J. Clin. Med. 2022, 11, 7196. [Google Scholar] [CrossRef]
- Guo, F.; Xu, L.; Gao, S.; Sun, X.; Zhang, N.; Gong, Y. Effect of orexin-A in the arcuate nucleus on cisplatin-induced gastric side effects in rats. Neurosci. Res. 2019, 143, 53–60. [Google Scholar] [CrossRef] [PubMed]
Tumor | Orexigenic System | References |
---|---|---|
Acute lymphoblastic leukemia | Plasma orexin levels increased in patients receiving chemoradiotherapy. Dexamethasone chemotherapy did not block the orexinergic signaling. | [84,85] |
Adrenocortical adenoma | Prepro-orexin mRNA, orexin A (not orexin B) and OXR1/OXR2 upregulation. Orexin A, but not orexin B, augmented normal/adrenocortical adenoma cell proliferation. NCI-H295R cell line: orexin A decreased OXR2 expression and increased OXR1 expression, cell proliferation, and cortisol release. Pheochromocytoma: OXR1 expression but not OXR2. Orexin A/B, via OXR2, favor catecholamine release from pheochromocytomas. PC12 cells: no OXR1/OXR2 expression, but orexin A/B decreased the level of tyrosine hydroxylase; effect exerted via non-orexin receptors. | [80,81,86,87,88,89] |
Breast cancer | Orexinergic hypothalamic neurons involved in tumor-induced changes in metabolism. | [90] |
Cervical cancer | OXR2 overexpression. | [91] |
Colon cancer | OXR1 expression. Orexins promoted apoptosis and decreased tumor volume. Apoptosis observed in tumor cells resistant to chemotherapy drugs. Orexin A promoted autophagy in cancer cells. High OXR1 expression in colon cancer cells and colonic epithelium of patients with ulcerative colitis. | [60,82,93,98,99] |
Endometrial cancer | OXR2, frequently lacking, related to OXR2 hypermethylation. | [58] |
Gastric cancer | OXR1 expression. Orexin A increased OXR1 expression, blocked apoptosis, and augmented viability and cell proliferation. OXR1 overexpression, via MAPK-dependent caspases and src-tyrosine, promoted tumor regression in gastric adenocarcinoma. Orexin A upregulation, OXR1/OXR2 expressions downregulated and high inflammation. | [82,101,102,103,104] |
Glioma | Orexin A, via a caspase-dependent mechanism, decreased tumor cell viability. C6 cells express OXR1/OXR2, which do not mediate cell proliferation. | [105] |
Head and neck cancer | Methylation status of the orexin precursor gene promoter related to cell survival and recurrence. An epigenetic marker for risk/prognosis. | [107] |
Hepatocellular carcinoma | OXR1 mRNA but not OXR2 mRNA expression. OXR1 located in the nuclei of cancer cells. Orexin A favored HIF-1α expression and its nuclear accumulation. Orexin A increased glucose uptake and glucose transporter 1 expression in tumor cells. Orexin A regulated cellular metabolism towards mitochondrial glucose oxidation rather than glycolysis. Stress and depression increased, via orexin downregulation, the risk of tumor development. | [108,109,111] |
Neuroblastoma | Orexin A expression. Orexins A/B promoted growth suppression and apoptotic mechanisms. Orexin A exerted an anti-apoptotic and antioxidant actions and decreased biochemical markers of cell death. Orexin A decreased the levels of intracellular reactive oxygen species and cytochrome c, Bax/Bcl-2 ration, and caspase 3 activity; HIF-1α induction. OXR1 regulated, via diacylglycerol-activated channels, the entry of calcium into tumor cells. | [92,112,114,115,116,118] |
Pancreatic cancer | Orexin A, via OXR1, promoted tumor cell proliferation and protected these cells from apoptosis. OXR1 blockade promoted apoptosis. Orexin A, via the SHP2 signaling cascade, promoted mitochondrial apoptosis in AsPC-1 cells. Orexin A decreased tumor volume by apoptosis. Orexin A blocked tumor development in tumors chemoresistant to abraxane or gemcitabine. Orexins blocked tumor growth and promoted apoptosis in the AR42J pancreatic acinar cell line expressing OXR2. | [19,119,120] |
Prostate cancer | OXRs expression: more widespread in prostate cancer than in benign prostate hyperplasia or chronic prostatitis. OXR expression indicator of poor prognosis. OXR1 promoted apoptosis and overexpressed in advanced tumors, but its expression was lower in low-grade tumors. Orexin A/OXR2 involved in maintenance and/or pathogenesis of benign prostatic hyperplasia. Orexin A upregulated OXR1 expression and decreased LNCaP cell survival. Orexin A, via OXR1, interfered with androgen receptor activity, which controls cancer onset and progression. Orexins increased non-transformed DU145cell growth, but, after neuroendocrine transformation, apoptosis was observed after treatment with orexin A. Orexin A, via OXR1, blocked cell growth in LNCaP and Du145 cells, and the peptide decreased the tumor volume of xenografted Du145 cells. Orexin A increased OXR1 expression in LNCaP cells. | [57,122,124,125,127] |
Basic research on the expression of the orexinergic system in many cancer types |
OXR antagonists: against those tumors in which orexins promote the proliferation of tumor cells |
OX agonists: against tumors in which orexins favor apoptotic mechanisms in cancer cells |
Molecular interactions between OXRs and OXR agonists or antagonists |
Design and develop of new and more potent/specific OXR agonists or antagonists |
Involvement of OXR dimerization/oligomerization in antimigratory and antimetastatic strategies |
Epigenetic mechanisms regulating the orexinergic system |
Orexin-chemotherapeutic drug interactions |
Orexins and autophagy in tumor cells |
Orexins and glucose uptake/glycolysis relationship |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos, P.; Coveñas, R. Involvement of the Orexinergic System in Cancer: Antitumor Strategies and Future Perspectives. Appl. Sci. 2023, 13, 7596. https://doi.org/10.3390/app13137596
Marcos P, Coveñas R. Involvement of the Orexinergic System in Cancer: Antitumor Strategies and Future Perspectives. Applied Sciences. 2023; 13(13):7596. https://doi.org/10.3390/app13137596
Chicago/Turabian StyleMarcos, Pilar, and Rafael Coveñas. 2023. "Involvement of the Orexinergic System in Cancer: Antitumor Strategies and Future Perspectives" Applied Sciences 13, no. 13: 7596. https://doi.org/10.3390/app13137596
APA StyleMarcos, P., & Coveñas, R. (2023). Involvement of the Orexinergic System in Cancer: Antitumor Strategies and Future Perspectives. Applied Sciences, 13(13), 7596. https://doi.org/10.3390/app13137596