Comparative Evaluation of Viscosity, Density and Ultrasonic Velocity Using Deviation Modelling for Ethyl-Alcohol Based Binary Mixtures
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussions
3.1. Viscosity Studies
- Hind relation (ηH)
- Kendall and Monroe relation (ηKM) [29]
- Bingham relation (ηB) [30]
- Arrhenius–Eyring relation (ηAE) [30]
- Croenauer–Rothfus Kermore relation (ηCRK) [30]:
- Gambrill relation (ηG) [30]:
3.2. Density Studies
- Yamada and Gunn model (ρYG) [33]
- Reid et al. model (ρR) [34]
3.3. Ultrasonic Velocity Studies
3.4. Molecular Interaction Properties
3.5. Studies on Excess Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parashar, R.; Azhar Ali, M.; Mehta, S.K. Excess molar volumes of some partially miscible liquid mixtures. J. Chem. Thermodyn. 2000, 32, 711–716. [Google Scholar] [CrossRef]
- Pretorius, F.; Focke, W.W.; Androsch, R.; Toit, E.D. Estimating binary liquid composition from density and refractive index measurements: A comprehensive review of mixing rules. J. Mol. Liq. 2021, 332, 115893. [Google Scholar] [CrossRef]
- Boli, E.; Katsavrias, T.; Voutsas, E. Viscosities of pure protic ionic liquids and their binary and ternary mixtures with water and ethanol. Fluid Phase Equilib. 2020, 520, 112663. [Google Scholar] [CrossRef]
- Qin, X.; Yang, S.; Zhao, J.; Wang, L.; Zhang, Y.; Luo, D. Density and viscosity for the ternary mixture of 1,3,5-trimethyladamantane + 1,2,3,4-tetrahydronaphthalene + n-octanol and corresponding binary systems at T = (293.15 to 343.15) K. J. Chem. Thermodyn. 2022, 168, 106726. [Google Scholar] [CrossRef]
- Cartes, M.; Chaparro, G.; Alonso, G.; Mejía, A. Density and viscosity of liquid mixtures formed by n-hexane, ethanol, and cyclopentyl methyl ether. J. Mol. Liq. 2022, 359, 119353. [Google Scholar] [CrossRef]
- Li, D.; Zheng, Y.; Wang, J.; Pang, Y.; Liu, M. Volumetric properties and viscosity for the ternary system of (1-pentanol + ethylcyclohexane + methyl myristate) and corresponding binary systems at T = 293.15–323.15 K. J. Chem. Thermodyn. 2022, 165, 106660. [Google Scholar] [CrossRef]
- Said, Z.; Cakmak, N.K.; Sharma, P.; Syam Sundar, L.; Inayat, A.; Keklikcioglu, O.; Li, C. Synthesis, stability, density, viscosity of ethylene glycol-based ternary hybrid nanofluids: Experimental investigations and model -prediction using modern machine learning techniques. Powder Technol. 2022, 400, 117190. [Google Scholar] [CrossRef]
- Pang, F.M.; Seng, C.E.; Teng, T.T.; Ibrahim, M.H. Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J. Mol. Liq. 2007, 136, 71–78. [Google Scholar] [CrossRef]
- Cano-Gómez, J.J.; Iglesias-Silva, G.A.; Castrejón-González, E.O.; Ramos-Estrada, M.; Hall, K.R. Density and Viscosity of Binary Liquid Mixtures of Ethanol + 1-Hexanol and Ethanol + 1-Heptanol from (293.15 to 328.15) K at 0.1 MPa. J. Chem. Eng. Data 2015, 60, 1945–1955. [Google Scholar] [CrossRef]
- Indraswati, N.; Mudjijati; Wicaksana, F.; Hindarso, H.; Ismadji, S. Density and Viscosity for a Binary Mixture of Ethyl Valerate and Hexyl Acetate with 1-Pentanol and 1-Hexanol at 293.15 K, 303.15 K, and 313.15 K. J. Chem. Eng. Data 2001, 46, 134–137. [Google Scholar] [CrossRef]
- Audonnet, F.; Pádua, A.A.H. Density and Viscosity of Mixtures of n-Hexane and 1-Hexanol from 303 to 423 K up to 50 MPa. Int. J. Thermophys. 2002, 23, 1537–1550. [Google Scholar] [CrossRef]
- Domańska, U.; Żołek-Tryznowska, Z. Measurements of the density and viscosity of binary mixtures of (hyper-branched polymer, B-H2004+1-butanol, or 1-hexanol, or 1-octanol, or methyl tert-butyl ether). J. Chem. Thermodyn. 2010, 42, 651–658. [Google Scholar] [CrossRef]
- Estrada-Baltazar, A.; Bravo-Sanchez, M.G.; Iglesias-Silva, G.A.; Alvarado, J.A.J.; Castrejon-Gonzalez, E.O.; Ramos-Estrada, M. Densities and viscosities of binary mixtures of n-decane + 1-pentanol, +1-hexanol, +1-heptanol at temperatures from 293.15 to 363.15K and atmospheric pressure. Chin. J. Chem. Eng. 2015, 23, 559–571. [Google Scholar] [CrossRef]
- Das, K.N.; Habibullah, M.; Rahman, I.M.M.; Hasegawa, H.; Ashraf Uddin, M.; Saifuddin, K. Thermodynamic Properties of the Binary Mixture of Hexan-1-ol with m-Xylene at T = (303.15, 313.15, and 323.15) K. J. Chem. Eng. Data 2009, 54, 3300–3302. [Google Scholar] [CrossRef]
- Saini, A.; Prabhune, A.; Mishra, A.P.; Dey, R. Density, ultrasonic velocity, viscosity, refractive index and surface tension of aqueous choline chloride with electrolyte solutions. J. Mol. Liq. 2021, 323, 114593. [Google Scholar] [CrossRef]
- Rana, V.A.; Chaube, H.A. Relative permittivity, density, viscosity, refractive index and ultrasonic velocity of binary mixture of ethylene glycol monophenyl ether and 1-hexanol at different temperatures. J. Mol. Liq. 2013, 187, 66–73. [Google Scholar] [CrossRef]
- Hasan, M.; Shirude, D.F.; Hiray, A.P.; Kadam, U.P.; Sawant, A.B. Densities, viscosities and ultrasonic velocity studies of binary mixtures of toluene with heptan-1-ol, octan-1-ol and decan-1-ol at 298.15 and 308.15 K. J. Mol. Liq. 2007, 135, 32–37. [Google Scholar] [CrossRef]
- Parveen, S.; Shukla, D.; Singh, S.; Singh, K.P.; Gupta, M.; Shukla, J.P. Ultrasonic velocity, density, viscosity and their excess parameters of the binary mixtures of tetrahydrofuran with methanol and o-cresol at varying temperatures. Appl. Acoust. 2009, 70, 507–513. [Google Scholar] [CrossRef]
- Thanuja, B.; Kanagam, C.; Sreedevi, S. Studies on intermolecular interaction on binary mixtures of methyl orange–water system: Excess molar functions of ultrasonic parameters at different concentrations and at different temperatures. Ultrason. Sonochem. 2011, 18, 1274–1278. [Google Scholar] [CrossRef]
- Thiyagarajan, R.; Palaniappan, L. Ultrasonic investigation of molecular association in binary mixtures of aniline with aliphatic alcohols. C. R. Chim. 2007, 10, 1157–1161. [Google Scholar] [CrossRef]
- Satheesh, B.; Sreenu, D.; Savitha Jyostna, T. Thermodynamic and spectroscopic studies of intermolecular interactions between isoamyl alcohol and monocyclic aromatic non-ideal binary liquid mixtures. Chem. Data Collect. 2020, 28, 100448. [Google Scholar] [CrossRef]
- Venkatramanana, K.; Padmanaban, R.; Arumugam, V. Acoustic, Thermal and molecular interactions of Polyethylene Glycol (2000, 3000, 6000). Phys. Procedia 2015, 70, 1052–1056. [Google Scholar] [CrossRef] [Green Version]
- Mathur, V.; Arya, P.K.; Sharma, K. Estimation of activation energy of phase transition of PVC through thermal conductivity and viscosity analysis. Mater. Today Proc. 2021, 38, 1237–1240. [Google Scholar] [CrossRef]
- Babu, P.; Prabhakara Rao, N.; Chandra Sekhar, G.; Bhanu Prakash, P. Ultrasonic studies in the ternary mixtures: Water + Iso-propanol +Pyridine at 303.15 K. Chem. Thermodyn. Therm. Anal. 2022, 5, 100032. [Google Scholar] [CrossRef]
- Syed Ibrahim, P.S.; Chidambara vinayagam, S.; Senthil Murugan, J.; Edward Jeyakumar, J. Ultrasonic studies on ternary liquid mixtures of some 1-alkanols with meta methoxy phenol and n hexane at 313 K. J. Mol. Liq. 2020, 304, 112752. [Google Scholar] [CrossRef]
- Srivastava, N.; Rathour, B.K.; Singh, S.; Singh, S. Thermoacoustical study of intermolecular interactions in binary liquid mixtures of benzaldehyde with methanol and ethanol. Chem. Phys. Impact 2023, 6, 100144. [Google Scholar] [CrossRef]
- Ali, A.; Hyder, S.; Nain, A.K. Studies on molecular interactions in binary liquid mixtures by viscosity and ultrasonic velocity measurements at 303.15 K. J. Mol. Liq. 1999, 79, 89–99. [Google Scholar] [CrossRef]
- Hind, R.K.; McLaughlin, E.; Ubbelohde, A.R. Structure and viscosity of liquids. Viscosity-temperature relationships of pyrrole and pyrrolidone. Trans. Faraday Soc. 1960, 56, 331–334. [Google Scholar] [CrossRef]
- Kendall, J.; Monroe, K.P. The Viscosity of Liquids. II. The Viscosity-Composition Curve for ideal liquid mixtures. J. Am. Chem. Soc. 1917, 39, 1787–1802. [Google Scholar] [CrossRef]
- Fakruddin Babavali, S.K.; Srinivasu, C.H.; Narendra, K.; Sridhar Yesaswi, C.H. Experimental and theoretical predictions of viscosity in binary liquid mixtures containing Quinoline with Arenes (Benzene, Toluene and Mesitylene) at temperature t = 303.15 K: A comparative study. RASAYAN J. Chem. 2016, 9, 544–549. [Google Scholar]
- Nasrifar, K.; Moshfeghian, M. A saturated liquid density equation in conjunction with the Predictive-Soave–Redlich–Kwong equation of state for pure refrigerants and LNG multicomponent systems. Fluid Phase Equilib. 1998, 153, 231–242. [Google Scholar] [CrossRef]
- Hankinson, R.W.; Thomson, G.H. A new correlation for saturated densities of liquids and their mixtures. AIChE J. 1979, 25, 653–663. [Google Scholar] [CrossRef]
- Yamada, T.; Gunn, R.D. Saturated liquid molar volumes Rackett equation. J. Chem. Eng. Data 1973, 18, 234–236. [Google Scholar] [CrossRef]
- Reid, R.C.; Prausnitz, J.M.; Sherwood, T.K. The Properties of Gases and Liquids; McGraw Hill: New York, NY, USA, 1977. [Google Scholar]
- Nomoto, O. Empirical Formula for Sound Velocity in Liquid Mixtures. J. Phys. Soc. Jpn. 1958, 13, 1528–1532. [Google Scholar] [CrossRef]
- Fakruddin Babavali, S.K.; Shakira, P.; Srinivasu, C.H.; Narendra, K. Comparative study of theoretical ultrasonic velocities of binary liquid mixtures containing quinoline and mesitylene at temperatures T = (303.15, 308.15, 313.15 and 318.15) K. Karbala Int. J. Mod. Sci. 2015, 1, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Santhi, N.; Sabarathinam, P.L.; Madhumitha, J.; Alamelumangai, G.; Emayavaramban, M. Theoretical evaluation of ultrasonic velocity in binary liquid mixtures of Alcohols + Benzene. Int. Lett. Chem. Phys. Astron. 2013, 2, 18–35. [Google Scholar] [CrossRef]
- Rama Rao, M. Velocity of Sound in Liquids and Chemical Constitution. J. Chem. Phys. 1941, 9, 682–685. [Google Scholar] [CrossRef] [Green Version]
- Junjie, Z. Calculation of Ultrasonic Velocity in Binary Liquid Mixtures of Benzene. J. China. Univ. Sci. Technol. 1984, 14, 298–299. [Google Scholar]
- Reddick, J.A.; Bringer, W.S. Techniques of Chemistry, 3rd ed.; W’dey Interscience: New York, NY, USA, 1970; Volume 2. [Google Scholar]
- Weissberger, A. Techniques of Organic Chemistry; Interscience Publishers, Inc.: New York, NY, USA, 1959; Volume 7. [Google Scholar]
- Tanford, C. Physical Chemistry of Macromolecules; John Wiley and Sons Inc.: New York, NY, USA, 1961. [Google Scholar]
- Monnery, W.D.; Svrcek, W.Y.; Mehrotra, A.K. Viscosity: A critical review of practical predictive and correlative methods. Can. J. Chem. Eng. 1995, 73, 3–40. [Google Scholar] [CrossRef]
- Poling, B.E.; Prausnitz, J.M.; O’connell, J.P. Properties of Gases and Liquids, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2001. [Google Scholar]
- Cao, W.; Fredenslund, A.; Rasmussen, P. Statistical thermodynamic model for viscosity of pure liquids and liquid mixtures. Ind. Eng. Chem. Res. 1992, 31, 2603–2619. [Google Scholar] [CrossRef]
- Thiyagarajan, R.; Palaniappan, L. Molecular interaction study of two aliphatic alcohols with cyclohexane. Indian J. Pure Appl. Phy. 2008, 46, 852–856. [Google Scholar]
- Elangovan, S.; Kebede, L.; Senbeto, E.K. Intermolecular Interactions between Chlorpheniramine with 1-Butanol, 1-Pentanol, and 1-Hexanol. Russ. J. Phys. Chem. 2022, 96, S1–S7. [Google Scholar] [CrossRef]
- Glory, J.; Naidu, P.S.; Jayamadhuri, N.; Ravindra Prasad, K. Study of Ultrasonic Velocity, Density and Viscosity in the Binary Mixtures of Benzyl Benzoate with 1-Octanol and Isophorone. Res. Rev. J. Pure Appl. Phy. 2013, 1, 5–18. [Google Scholar]
- Wankhede, D.S.; Lande, M.K.; Arbad, B.R. Densities and Viscosities of Binary Mixtures of Paraldehyde + Propylene Carbonate at (288.15, 293.15, 298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 2005, 50, 261–263. [Google Scholar] [CrossRef]
- Challis, R.E.; Povey, M.J.W.; Mather, M.L.; Holmes, A.K. Ultrasound techniques for characterizing colloidal dispersions. Rep. Prog. Phys. 2005, 68, 1541–1637. [Google Scholar] [CrossRef]
- Bhardwaj, C.K.; Prakash, S.; Bhardwaj, A.K. Study of nitrazepam interaction with alcohol: An ultrasonic and physiochemical investigation. Can. J. Chem. 2021, 99, 942–949. [Google Scholar] [CrossRef]
- Srivastava, N.; Rathour, B.K.; Singh, S. Ultrasonic and Thermodynamical Study of Molecular Interactions in Binary Liquid Mixtures at Different Temperatures. Russ. J. Phys. Chem. 2022, 96, 15–26. [Google Scholar] [CrossRef]
- Bindhani, S.K.; Roy, G.K.; Mohanty, Y.K.; Kubendran, T.R. Effect of temperature and concentration on density, viscosity and ultrasonic velocity of the pentan-1-ol + nitrobenzene mixtures. Russ. J. Phys. Chem. 2014, 88, 1255–1264. [Google Scholar] [CrossRef]
- Naik, A.B. Densities, viscosities, speed of sound and some acoustical parameter studies of substituted pyrazoline compounds at different temperatures. Ind. J. Pure Appl. Phys. 2015, 53, 27–34. [Google Scholar]
- Naik, A.B.; Morey, P.B. Density, viscosity, and ultrasonic measurements on liquid–liquid interactions of some binary mixtures. Russ. J. Phys. Chem. 2022, 96, 2417–2424. [Google Scholar] [CrossRef]
- Elangovan, S.; Mullainathan, S. Intermolecular Interaction Studies in Binary Mixture of Methyl formate with Methanol at Various Temperatures. Asian J. Chem. 2014, 26, 137–141. [Google Scholar] [CrossRef]
- Rezaei-Sameti, M.; Iloukhani, H.; Rakhshi, M. Excess thermodynamic parameters of binary mixtures of methanol, ethanol, 1-propanol, and 2-butanol + chloroform at (288.15–323.15 K) and comparison with the Flory theory. Russ. J. Phys. Chem. 2010, 84, 2023–2032. [Google Scholar] [CrossRef]
- Fort, R.J.; Moore, W.R. Viscosities of binary liquid mixtures. Trans. Faraday Soc. 1966, 62, 1112–1119. [Google Scholar] [CrossRef]
- Fort, R.J.; Moore, W.R. Adiabatic compressibilities of binary liquid mixtures. Trans. Faraday Soc. 1965, 61, 2102–2111. [Google Scholar] [CrossRef]
Liquid | Density (kg/m3) | Viscosity (×10−3 Nsm−2) | Ultrasonic Velocity (m/s) | |||
---|---|---|---|---|---|---|
Expt [27] | Literature | Expt [27] | Literature | Expt [27] | Literature | |
Ethanol | 783.9 | 780.5 [46] | 1.0090 | 0.983 [46] | 1133.3 | 1130 [46] |
1-Hexanol | 807.6 | 810.0 [47] | 3.8951 | 3.513 [47] | 1281.7 | 1289 [47] |
1-Octanol | 817.2 | 803.03 [48] | 6.4931 | 5.9424 [48] | 1327.5 | 1329 [48] |
APD of experimental and literature value | 0.80% | 7.5% | 0.3% |
Mole Fraction of Ethanol | Viscosity (Experimental Values) ×10−3 Nsm−2 | Theoretical Viscosity (×10−3 Nsm−2) | |||||
---|---|---|---|---|---|---|---|
Hind Relation (ηH) | Kendall and Monroe Relation (ηKM) | Bingham Relation (ηB) | Arrhenius–Eyring Relation (ηAE) | Croenauer–Rothfus Kermore Relation (ηCRK) | Gambrill Relation (ηG) | ||
0.00 | 3.8951 | 3.8951 | 3.8424 | 3.8951 | 3.8951 | 3.8950 | 4.1085 |
0.14 | 3.3639 | 3.4815 | 3.2784 | 3.4815 | 3.2096 | 3.2152 | 3.5068 |
0.28 | 2.8872 | 3.0829 | 2.7899 | 3.0829 | 2.6634 | 2.6701 | 2.9834 |
0.49 | 2.2414 | 2.4895 | 2.1564 | 2.4895 | 2.0175 | 2.0241 | 2.3057 |
0.64 | 1.8073 | 2.0341 | 1.7412 | 2.0341 | 1.6302 | 1.6354 | 1.8616 |
0.77 | 1.5088 | 1.6754 | 1.4545 | 1.6754 | 1.3782 | 1.3814 | 1.5546 |
0.87 | 1.2795 | 1.3865 | 1.2480 | 1.3865 | 1.2039 | 1.2049 | 1.3330 |
0.95 | 1.0933 | 1.1463 | 1.0920 | 1.1463 | 1.0760 | 1.0768 | 1.1675 |
1.00 | 1.0090 | 1.0090 | 1.0089 | 1.0090 | 1.0090 | 1.0088 | 1.0784 |
APD from experimental values | −6.46% | 2.32% | −6.46% | 5.35% | 5.21% | −4.43% |
Mole Fraction of Ethanol | Viscosity (Experimental Values) ×10−3 Nsm−2 | Theoretical Viscosity (×10−3 Nsm−2) | |||||
---|---|---|---|---|---|---|---|
Hind Relation (ηH) | Kendall and Monroe Relation (ηKM) | Bingham Relation (ηB) | Arrhenius–Eyring Relation (ηAE) | Croenauer–Rothfus Kermore Relation (ηCRK) | Gambrill Relation (ηG) | ||
0.00 | 6.4931 | 6.4931 | 6.3727 | 6.4931 | 6.4931 | 6.4930 | 6.8147 |
0.13 | 5.4708 | 5.7796 | 5.2978 | 5.7796 | 5.0963 | 5.11579 | 5.6738 |
0.24 | 4.6068 | 5.1604 | 4.4692 | 5.1604 | 4.1302 | 4.1588 | 4.7932 |
0.33 | 4.0015 | 4.6619 | 3.8686 | 4.6619 | 3.4871 | 3.5194 | 4.1542 |
0.55 | 2.9218 | 3.4894 | 2.6733 | 3.4894 | 2.3420 | 2.3707 | 2.8753 |
0.70 | 2.1685 | 2.6657 | 2.0006 | 2.6657 | 1.7707 | 1.7871 | 2.1461 |
0.81 | 1.6888 | 2.0542 | 1.5818 | 2.0542 | 1.4388 | 1.4459 | 1.6916 |
0.89 | 1.3623 | 1.5859 | 1.3039 | 1.5859 | 1.2273 | 1.2295 | 1.3922 |
0.96 | 1.1211 | 1.2272 | 1.1146 | 1.2272 | 1.0866 | 1.0871 | 1.1904 |
1.00 | 1.0090 | 1.0090 | 1.0089 | 1.0090 | 1.0090 | 1.0089 | 1.0783 |
APD from experimental values | −12.41% | 3.88% | −12.41% | 9.60% | 9.19% | −2.93% |
Mole Fraction of Ethanol | Density (Experimental Values) kg/m3 | Theoretical Density (kg/m3) | |||
---|---|---|---|---|---|
Mchaweh–Nasrifar–Mashfeghian Model (ρMNM) | Hankinson and Thomson Model (ρHT) | Yamada and Gunn Model (ρYG) | Reid et al. Model (ρR) | ||
0.00 | 807.6 | 654.2 | 844.9 | 839.7 | 839.2 |
0.14 | 805.6 | 656.6 | 847.9 | 842.9 | 842.2 |
0.28 | 802.9 | 658.8 | 850.5 | 845.6 | 844.7 |
0.49 | 798.6 | 661.5 | 853.6 | 848.9 | 847.8 |
0.64 | 794.8 | 663.3 | 855.2 | 850.6 | 849.5 |
0.77 | 791.2 | 664.4 | 855.9 | 851.5 | 850.4 |
0.87 | 787.7 | 665.1 | 856.1 | 851.8 | 850.7 |
0.95 | 785.7 | 665.5 | 856.0 | 851.8 | 850.7 |
1.00 | 783.9 | 665.6 | 855.9 | 851.6 | 850.7 |
APD from experimental values | 16.79% | −7.25% | −6.67% | −6.55% |
Mole Fraction of Ethanol | Density (Experimental Values) kg/m3 | Theoretical Density (kg/m3) | |||
---|---|---|---|---|---|
Mchaweh–Nasrifar–Mashfeghian Model (ρMNM) | Hankinson and Thomson Model (ρHT) | Yamada and Gunn Model (ρYG) | Reid et al. Model (ρR) | ||
0.00 | 817.2 | 659.5 | 862.7 | 858.1 | 855.2 |
0.13 | 815.9 | 661.6 | 864.3 | 859.7 | 856.9 |
0.24 | 814.6 | 663.3 | 865.2 | 860.7 | 857.9 |
0.33 | 813.4 | 664.4 | 865.6 | 861.2 | 858.5 |
0.55 | 808.6 | 666.3 | 865.2 | 860.9 | 858.5 |
0.70 | 801.2 | 666.9 | 863.5 | 859.3 | 857.2 |
0.81 | 794.1 | 666.9 | 861.4 | 857.2 | 855.5 |
0.89 | 788.8 | 666.5 | 859.3 | 855.1 | 853.7 |
0.96 | 785.6 | 666.0 | 857.3 | 853.0 | 851.9 |
1.00 | 783.9 | 665.6 | 855.9 | 851.6 | 850.7 |
APD from experimental values | 17.13 | −7.46 | −6.92 | −6.66 |
Mole Fraction of Ethanol | Ultrasonic Velocity (Experimental Values) m/s | Theoretical Ultrasonic Velocity (m/s) | ||||
---|---|---|---|---|---|---|
Nomoto Relation (UN) | Van Dael and Vangeel Relation (UIMR) | Impedance Relation (UIR) | Rao’s Specific Velocity Relation (UR) | Junjie Relation (UJ) | ||
0.00 | 1281.7 | 1193.9 | 1281.7 | 1281.7 | 1192.3 | 1281.1 |
0.14 | 1270.6 | 1183.6 | 1188.1 | 1261.0 | 1172.1 | 1268.1 |
0.28 | 1257.9 | 1172.0 | 1131.8 | 1240.8 | 1152.8 | 1253.8 |
0.49 | 1245.9 | 1150.6 | 1088.0 | 1210.5 | 1124.5 | 1228.7 |
0.64 | 1217.3 | 1129.5 | 1079.0 | 1187.0 | 1103.1 | 1205.4 |
0.77 | 1194.0 | 1108.9 | 1085.7 | 1168.4 | 1086.4 | 1183.9 |
0.87 | 1177.3 | 1088.8 | 1100.2 | 1153.2 | 1073.1 | 1163.9 |
0.95 | 1145.3 | 1069.0 | 1119.2 | 1140.6 | 1062.1 | 1145.1 |
1.00 | 1133.3 | 1056.1 | 1133.3 | 1133.3 | 1055.9 | 1133.3 |
APD from experimental values | 7.06% | 6.49% | 1.34% | 8.24% | 0.55% |
Mole Fraction of Ethanol | Ultrasonic Velocity (Experimental Values) m/s | Theoretical Ultrasonic Velocity (m/s) | ||||
---|---|---|---|---|---|---|
Nomoto Relation (UN) | Van Dael and Vangeel Relation (Uimr) | Impedance Relation (UIR) | Rao’s Specific Velocity Relation (UR) | Junjie Relation (UJ) | ||
0.00 | 1327.5 | 1234.6 | 1327.5 | 1327.5 | 1235.3 | 1327.3 |
0.13 | 1316.6 | 1224.8 | 1183.1 | 1303.1 | 1210.9 | 1314.1 |
0.24 | 1307.6 | 1214.8 | 1109.1 | 1281.8 | 1190.0 | 1300.9 |
0.33 | 1298.6 | 1205.5 | 1070.4 | 1264.4 | 1173.3 | 1289.0 |
0.55 | 1264.0 | 1177.5 | 1028.9 | 1223.1 | 1134.7 | 1255.1 |
0.70 | 1239.7 | 1150.2 | 1032.9 | 1193.7 | 1108.1 | 1224.3 |
0.81 | 1200.4 | 1123.5 | 1053.4 | 1171.6 | 1088.6 | 1196.3 |
0.89 | 1167.8 | 1097.6 | 1081.0 | 1154.5 | 1073.9 | 1170.9 |
0.96 | 1146.8 | 1073.3 | 1110.7 | 1141.3 | 1062.7 | 1148.5 |
1.00 | 1133.3 | 1056.1 | 1133.3 | 1133.3 | 1055.9 | 1133.3 |
APD from experimental values | 6.79% | 10.10% | 1.66% | 8.60% | 0.33% |
Mole Fraction of Ethanol | Adiabatic Compressibility (β) (×10−10 m2N−1) | Intermolecular Free Length (Lf) (×10−11 m) | Free Volume (Vf) (×10−8 m3mol−1) | Internal Pressure (π) (×108 Pa) | Viscous Relaxation Time (τ) (×10−12 s) |
---|---|---|---|---|---|
Ethanol + 1-Hexanol | |||||
0.00 | 7.537 | 5.696 | 2.201 | 6.723 | 3.914 |
0.14 | 7.688 | 5.753 | 2.394 | 6.889 | 3.448 |
0.28 | 7.871 | 5.821 | 2.607 | 7.070 | 3.030 |
0.49 | 8.066 | 5.893 | 3.030 | 7.365 | 2.410 |
0.64 | 8.490 | 6.046 | 3.347 | 7.718 | 2.046 |
0.77 | 8.865 | 6.178 | 3.605 | 8.081 | 1.783 |
0.87 | 9.159 | 6.279 | 3.891 | 8.390 | 1.562 |
0.95 | 9.702 | 6.463 | 4.121 | 8.728 | 1.414 |
1.00 | 9.932 | 6.539 | 4.205 | 8.985 | 1.336 |
Ethanol + 1-Octanol | |||||
0.00 | 6.943 | 5.467 | 1.551 | 6.486 | 6.011 |
0.13 | 7.070 | 5.517 | 1.737 | 6.612 | 5.157 |
0.24 | 7.179 | 5.559 | 1.964 | 6.697 | 4.410 |
0.33 | 7.290 | 5.602 | 2.155 | 6.804 | 3.889 |
0.55 | 7.740 | 5.773 | 2.480 | 7.349 | 3.015 |
0.70 | 8.121 | 5.913 | 2.951 | 7.675 | 2.348 |
0.81 | 8.739 | 6.134 | 3.313 | 8.056 | 1.967 |
0.89 | 9.296 | 6.326 | 3.649 | 8.423 | 1.688 |
0.96 | 9.678 | 6.455 | 4.060 | 8.691 | 1.446 |
1.00 | 9.932 | 6.539 | 4.205 | 8.985 | 1.336 |
Mole Fraction of Ethanol | βE (×10−10 m2N−1) | LfE (×10−11 m) | πE ×108 Pa | τE ×10−12 s |
---|---|---|---|---|
Ethanol + 1-Hexanol | ||||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 |
0.14 | −0.191 | −0.063 | −0.157 | −0.096 |
0.28 | −0.340 | −0.112 | −0.288 | −0.158 |
0.49 | −0.636 | −0.213 | −0.458 | −0.248 |
0.64 | −0.590 | −0.193 | −0.463 | −0.205 |
0.77 | −0.513 | −0.166 | −0.381 | −0.148 |
0.87 | −0.459 | −0.149 | −0.298 | −0.110 |
0.95 | −0.115 | −0.036 | −0.148 | −0.044 |
1.00 | 0.000 | 0.000 | 0.000 | 0.000 |
Ethanol + 1-Octanol | ||||
0.00 | 0.000 | 0.000 | 0.000 | 0.000 |
0.13 | −0.262 | −0.090 | −0.198 | −0.245 |
0.24 | −0.490 | −0.168 | −0.396 | −0.465 |
0.33 | −0.651 | −0.223 | −0.516 | −0.561 |
0.55 | −0.840 | −0.282 | −0.505 | −0.435 |
0.70 | −0.908 | −0.302 | −0.555 | −0.400 |
0.81 | −0.623 | −0.201 | −0.452 | −0.259 |
0.89 | −0.322 | −0.100 | −0.299 | −0.139 |
0.96 | −0.135 | −0.041 | −0.193 | −0.076 |
1.00 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padmanaban, R.; Gayathri, A.; Gopalan, A.I.; Lee, D.-E.; Venkatramanan, K. Comparative Evaluation of Viscosity, Density and Ultrasonic Velocity Using Deviation Modelling for Ethyl-Alcohol Based Binary Mixtures. Appl. Sci. 2023, 13, 7475. https://doi.org/10.3390/app13137475
Padmanaban R, Gayathri A, Gopalan AI, Lee D-E, Venkatramanan K. Comparative Evaluation of Viscosity, Density and Ultrasonic Velocity Using Deviation Modelling for Ethyl-Alcohol Based Binary Mixtures. Applied Sciences. 2023; 13(13):7475. https://doi.org/10.3390/app13137475
Chicago/Turabian StylePadmanaban, Radhakrishnan, Ahobilam Gayathri, Aanantha Iyengar Gopalan, Dong-Eun Lee, and Kannan Venkatramanan. 2023. "Comparative Evaluation of Viscosity, Density and Ultrasonic Velocity Using Deviation Modelling for Ethyl-Alcohol Based Binary Mixtures" Applied Sciences 13, no. 13: 7475. https://doi.org/10.3390/app13137475
APA StylePadmanaban, R., Gayathri, A., Gopalan, A. I., Lee, D.-E., & Venkatramanan, K. (2023). Comparative Evaluation of Viscosity, Density and Ultrasonic Velocity Using Deviation Modelling for Ethyl-Alcohol Based Binary Mixtures. Applied Sciences, 13(13), 7475. https://doi.org/10.3390/app13137475