Implications of Arch Warp Altitudes on an Ancient Masonry Bridge under Ground Movements
Abstract
:1. Introduction
2. Explanation of the One Span MAB
3. Modeling
3.1. Component Forms
3.2. Interaction Forming
3.3. Meshing
3.4. Material Model and Border Situations
4. NF and FF GMs
5. Analyses Consequences
6. Results
- The results of the analyses made within the scope of the study show that under standard gravity, the collapse of the MAB is not caused by the stress and displacement values.
- The consequences indicate a clear advantage of using 3D investigations for MABs considering the cases studied. The consequences of the analyses demonstrate the most critical sections of the MABs as the altitude of the arch warps decreases. Furthermore, it was detected that the maximum motions reduced while the altitude of the one-span MAB increases under NF and FF GMs and vice versa.
- It was observed that the arches that carry the main structure of the MABs are the divisions that are essential for examination considering their seismic performance.
- While the altitude of the one-span MAB rises specifically under NF GMs, it was noticed that the obtained stress reached the allowable masonry traction resistance. Furthermore, the evidence of dynamic investigations showed that the most critical sections of the MAB are the sub-sections of the MAB, specifically on the higher side of the large belt, posing a hazard for destruction. The maximum principal stress values demonstrated a decrease as the MAB height increases, decreasing from 2.27 MPa to 0.881 MPa.
- Furthermore, deformation values of MAB showed a reduction as the MAB height increased, decreasing from 5.96 mm to 5.52 mm. Dangerous (large) relation displacement stages were not determined along the MAB altitude.
- The compression stresses are well under the masonry pressure resistance and are not reflected to be hazardous considering the point of destruction while the altitude of the one-span MAB rises. Moreover, for the one-span MAB, the potential destruction as a result of motions was established to be critical when the altitudes of the one-span MAB reduced. Nevertheless, there is no movement at the degree that would lead to destruction to the sections of the one-span MAB that were left behind.
- As a result of the modeling approach chosen, it was observed that behavior (damage, etc.) takes place in the sections where stresses are concentrated in the elements. Furthermore, although stress/strain values increase in small amounts as a result of NF and FF GMs, significant decreases in fatigue life occur when the height of the arch warp increases.
- Future studies with field observation as well as analytical investigations are needed to contribute to the literature. The current investigated the effect of height, thereby contributing to the basis of other investigations that should be performed in future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sevim, B.; Bayraktar, A.; Altunisik, A.C.; Atamturktur, S.; Birinci, F. Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations. Nonlin. Dyn. 2011, 63, 755–770. [Google Scholar] [CrossRef]
- Koksal, H.O.; Doran, B.; Kuruscu, A.O.; Kocak, A. Elastoplastic Finite Element Analysis of Masonry Shear Walls. KSCE J. Civ. Eng. 2015, 20, 784–791. [Google Scholar] [CrossRef]
- Cakir, F.; Seker, B.S.; Durmus, A.; Dogangun, A.; Uysal, H. Seismic assessment of a historical masonry mosque by experimental tests and finite element analyses. KSCE J. Civ. Eng. KSCE 2015, 19, 158–164. [Google Scholar] [CrossRef]
- Sözen, Ş.; Çavuş, M. Assessment of the Seismic Performance of a Historical Building Reinforced with Steel Buttress. KSCE J. Civ. Eng. 2019, 23, 3113–3121. [Google Scholar] [CrossRef]
- Güllü, H.; Karabekmez, M. Gaziantep Kurtuluş Camisinin Deprem Davranışının İncelenmesi. DÜMF Mühendislik Derg. 2016, 7, 455–470. [Google Scholar]
- Arnold, C.; Reitherman, R. Building Configuration and Seismic Design; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Kramer, S.L. Geotechnical Earthquake Engineering; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- URL-1. Available online: https://pixabay.com/tr/photos/mostar-köprü-seyahat-bosna-1155672/ (accessed on 29 April 2019).
- Raychowdhury, R. Effect of soil parameter uncertainty on seismic demand of low-rise steel buildings on dense silty sand. Soil Dyn. Earthq. Eng. 2009, 29, 1367–1378. [Google Scholar] [CrossRef]
- Luco, J.E.; Lanzi, A. Approximate soil-structure interaction analysis by a perturbation approach: The case of stiff soils. Soil. Dyn. Earthq. Eng. 2013, 51, 97–110. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Olgun, S.; Elmacı, H.; Özalp, S. Active Fault Map of Turkey; General Directorate of Mineral Research and Exploration: Ankara, Turkey, 2012. [Google Scholar] [CrossRef]
- Mazza, F.; Labernarda, R. Structural and non-structural intensity measures for the assessment of base-isolated structures subjected to pulse-like near-fault earthquakes. Soil. Dyn. Earthq. Eng. 2017, 96, 115–127. [Google Scholar] [CrossRef]
- Pelà, L.; Aprile, A.; Benedetti, A. Seismic assessment of masonry arch bridges. Eng. Struct. 2009, 31, 1777–1788. [Google Scholar] [CrossRef]
- Page, J. Masonry Arch Bridges—A State of the Art Review; HMSO: London, UK, 1993. [Google Scholar]
- Armstrong, D.M.; Sibbald, A.; Fairfield, C.A.; Forde, M.C. Modal analysis for masonry arch bridge spandrel wall separation identification. NDT E Int. 1995, 28, 377–386. [Google Scholar] [CrossRef]
- Bensalem, A.; Fairfield, C.A.; Sibbald, A. Non-destructive evaluation of the dynamic response of a brickwork arch. ICE J. Struct. Build. 1997, 122, 69–82. [Google Scholar] [CrossRef]
- Bensalem, A.; Fairfield, C.A.; Sibbald, A. Damping effects on the NDT of soil backfilled arch bridges. J. Br. Inst. NDT 1998, 40, 107–116. [Google Scholar]
- Brencich, A.; Sabia, D. Experimental identification of a multi-span masonry bridge: The Tanaro Bridge. Constr. Build. Mater. 2008, 22, 2087–2099. [Google Scholar] [CrossRef]
- Diamanti, N.; Giannopoulos, A.; Forde, M.C. Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges. NDT E Int. 2008, 41, 354–363. [Google Scholar] [CrossRef]
- Ural, A.; Oruç, S.; Doğangün, A.; Tuluk, Ö.İ. Turkish historical arch bridges and their deteriorations and failures. Eng. Fail. Anal. 2008, 15, 43–53. [Google Scholar] [CrossRef]
- Sarhosis, V.; Oliveira, D.V.; Lemos, J.V.; Lourenço, P.B. The effect of skew angle on the mechanical behaviour of masonry arches. Mech. Res. Commun. 2014, 61, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Conde, B.; Díaz-Vilariño, L.; Lagüela, S.; Arias, P. Structural analysis of Monforte de Lemos masonry arch bridge considering the influence of the geometry of the arches and fill material on the collapse load estimation. Construct. Build. Mater. 2016, 120, 630–642. [Google Scholar] [CrossRef]
- Sayın, E. Nonlinear seismic response of a masonry arch bridge. Earthq. Struct. 2016, 10, 483–494. [Google Scholar] [CrossRef]
- Aydin, A.C.; Özkaya, S.G. The finite element analysis of collapse loads of single-spanned historic masonry arch bridges (Ordu, Sarpdere Bridge). Eng. Fail. Anal. 2018, 84, 131–138. [Google Scholar] [CrossRef]
- Altunışık, A.C.; Kanbur, B.; Genç, A.F.; Kalkan, E. Structural response of historical masonry arch bridges under different arch curvature considering soil-structure interaction. Geomech. Eng. 2019, 18, 141–151. [Google Scholar] [CrossRef]
- Breccolottia, M.; Severinib, L.; Cavalagli, N.; Bonfiglic, F.M.; Gusellad, V. Rapid evaluation of in-plane seismic capacity of masonry arch bridges through limit analysis. Earthq. Struct. 2018, 15, 541–553. [Google Scholar] [CrossRef]
- Hamad, F.S. Ancient Mesopotamian Stone Bridge: Numerical Modeling and Structural Assessment. Shock. Vib. 2022, 2022, 4255354. [Google Scholar] [CrossRef]
- Sokolović, N.M.; Petrović, M.; Kontić, A.; Koprivica, S.; Šekularac, N. Inspection and Assessment of Masonry Arch Bridges: Ivanjica Case Study. Sustainability 2021, 13, 13363. [Google Scholar] [CrossRef]
- Demirel, I.O.; Aldemir, A. Simplified Approach for Seismic Performance Assessment of Dry-Joint Masonry Arch Bridges. Buildings 2021, 11, 313. [Google Scholar] [CrossRef]
- Bencardino, F.; Curto, R.; Scavelli, V. Inspection and Structural Rehabilitation of an Existing Masonry Arch Railway Bridge. Appl. Sci. 2023, 13, 2973. [Google Scholar] [CrossRef]
- Ou, W.; Chen, X.; Chan, A.; Cheng, Y.; Wang, H. FDEM Simulation on the Failure Behavior of Historic Masonry Heritages Subjected to Differential Settlement. Buildings 2022, 12, 1592. [Google Scholar] [CrossRef]
- Addessi, D.; Gatta, C.; Nocera, M.; Liberatore, D. Nonlinear Dynamic Analysis of a Masonry Arch Bridge Accounting for Damage Evolution. Geosciences 2021, 11, 343. [Google Scholar] [CrossRef]
- Savini, F.; Rainieri, C.; Fabbrocino, G.; Trizio, I. Applications of Stratigraphic Analysis to Enhance the Inspection and Structural Characterization of Historic Bridges. Infrastructures 2021, 6, 7. [Google Scholar] [CrossRef]
- Accornero, F.; Lacidogna, G. Safety Assessment of Masonry Arch Bridges Considering the Fracturing Benefit. Appl. Sci. 2020, 10, 3490. [Google Scholar] [CrossRef]
- He, L.; Castoro, C.; Aloisio, A.; Zhang, Z.; Marano, G.C.; Gregori, A.; Deng, C.; Briseghella, B. Dynamic assessment, FE modelling and parametric updating of a butterfly-arch stress-ribbon pedestrian bridge. Struct. Infrastruct. Eng. 2022, 18, 1064–1075. [Google Scholar] [CrossRef]
- Milani, G.; Lourenço, P. B 3D non-linear behavior of masonry arch bridges. Comput. Struct. 2012, 110–111, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Dogangun, A. and Sezen, H. Seismic vulnerability and preservation of historical masonry monumental structures. Earthq. Struct. 2016, 3, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Muvafık, M. Field investigation and seismic analysis of a historical brick masonry minaret damaged during the Van earthquakes in 2011. Earthq. Struct. 2014, 6, 457–472. [Google Scholar] [CrossRef]
- Cakir, F.; Seker, B.S. Structural performance of renovated masonry low bridge in Amasya, Turkey. Earthq. Struct. 2015, 8, 1387–1406. [Google Scholar] [CrossRef]
- Preciado, A.; Bartoli, G.; Budelmann, H. Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques. Earthq. Struct. 2015, 99, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Basaran, H.; Demir, A.; Ercan, E.; Nohutçu, H.; Hökelekli, E.; Kozanoğlu, C. Investigation of seismic safety of a masonry minaret using its dynamic characteristics. Earthq. Struct. 2016, 10, 523–538. [Google Scholar] [CrossRef]
- Cakir, F.; Ergen, Y.B.; Uysal, H.; Dogangun, A. Influence of modified intended use on the seismic behavior of historical himis structures. Earthq. Struct. 2016, 10, 893–911. [Google Scholar] [CrossRef]
- Chung, Y.S.; Park, C.K.; Lee, D.H. Seismic performance of RC bridge piers subjected to moderate earthquakes. Struct. Eng. Mech. Int. J. 2006, 24, 429–446. [Google Scholar] [CrossRef]
- Onat, O. Fundamental vibration frequency prediction of historical masonry bridges. Struct. Eng. Mech. Int. J. 2019, 69, 155–162. [Google Scholar]
- Karalar, M.; Mustafa, Y. Effect of near-fault earthquakes on a historical masonry arch bridge (KonjicBridge). Earthq. Struct. 2021, 21, 125–136. [Google Scholar] [CrossRef]
- Emek, S. Karabük Safranbolu Tarihi Aşağı Tokatlı Köprüsü Röleve Restitüsyon Restorasyon Raporu; Karayolları Genel Müdürlüğü 15; Bölge Müdürlüğü: Karabük, Turkey, 2012; pp. 8–60. [Google Scholar]
- ANSYS. ANSYS User’s Manual Revision. 5.5; ANSYS Inc.: Canonsburg, PA, USA, 1998. [Google Scholar]
- SAP2000, Version 7.0. Integrated Finite Elements Analysis and Design of Structures. Computers and Structures, Inc.: Berkeley, CA, USA, 2008.
- Kamil, J.A.; Khan, I.A.; Nath, Y. Numerical and Experimental Dynamic Contact of Rotating Spur Gear. Mod. Appl. Sci. 2011, 5, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Kadhim, M.M.A. Factors effect on the effective length in a double strap joint between steel plates and CFRP. Int. J. Adv. Appl. Sci. 2012, 1, 11–18. [Google Scholar]
- Makris, N.; Chang, S. Effect of Damping Mechanisms on the Response of Seismically Isolated Structures; PEER-98/06; Pacific Earthquake Engineering Research Center: Berkeley, CA, USA, 1998. [Google Scholar]
- Makris, N.; Black, J.C. Evaluation of peak ground velocity as a “Good” intensity measure for near-source ground motions. J. Eng. Mech. 2004, 130, 1032–1044. [Google Scholar] [CrossRef]
- Nemutlu, Ö.F.; Güzel, I.; Balun, B.; Öztürk, M.; Sarı, A. Nonlinear Seismic Assessment of Historical Masonry Karaz Bridge Under Different Ground Motion Records. Bitlis Eren Üniversitesi Bilim. Derg. 2023, 12, 247–260. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G.L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Lubliner, J.; Oliver, J.; Oller, S.; Onate, E. A Plastic Damage Model for Concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
Material | E (N/m2) | ρ | γ (kg/m3) |
---|---|---|---|
Stone arches | 3.0 × 109 | 0.25 | 1600 |
Timber block | 1.5 × 109 | 0.05 | 1300 |
Side walls | 2.5 × 109 | 0.20 | 1400 |
Fault Form | GMs# Number | GMs | Source | Ap | Vp |
---|---|---|---|---|---|
(g) | (cm/s) | ||||
GM#1 | C. Mend, 1992 | 89156 Petrolia | 0.66 | 90.0 | |
NF | GM#2 | Kobe, 1995 | KOBE/KJM000 | 0.82 | 81.0 |
GM#3 | S. Hills, 1987 | SUPERST/B-PTS225 | 0.45 | 112.0 | |
GM#4 | Nrthrdg, 1994 | 90056 Newhall—W. Pico Canyon Rd. | 0.45 | 92.9 | |
GM#5 | I. Val, 1979 | 5165 El Centro Diff. Array | 0.35 | 71.0 | |
GM#6 | Chi-Chi, 1999 | CHICHI/TCU087-W | 0.38 | 120.0 | |
FF | GM#7 | Borrego Mount, 1968 | Hollywood Storage Lot/180° | 0.01 | 2.33 |
GM#8 | Friuli, Italy, 1976 | Conegliano/0° | 0.03 | 4.29 | |
GM#9 | Kobe, 1995 | FUK/0° | 0.05 | 3.52 | |
GM#10 | M. Hill, 1984 | San Fran. Int. Airport/90° | 0.06 | 3.65 | |
GM#11 | NW California, 1941 | Ferndale City Hall/45° | 0.02 | 0.76 |
Arch Heights (m) | Fault | GMs | Motions (mm) | Max. Principal Stress (MPa) | Max. Principal Elastic Strain (mm/mm) |
---|---|---|---|---|---|
7 | NF | C. Mend, 1992 | 5.96 | 2.100 | 0.000680 |
Chi-Chi, 1999 | 2.11 | 2.275 | 0.000730 | ||
I. Valley, 1979 | 3.57 | 1.390 | 0.000450 | ||
Kobe, 1995 | 7.23 | 0.818 | 0.000260 | ||
Northridge, 1994 | 4.34 | 0.823 | 0.000264 | ||
S. Hills, 1987 | 4.36 | 0.800 | 0.000256 | ||
FF | B. Mount, 1968 | 1.65 | 0.818 | 0.000262 | |
Friuli, Italy, 1976 | 1.64 | 0.817 | 0.000262 | ||
Kobe, 1995 | 1.63 | 0.815 | 0.000261 | ||
M. Hill, 1984 | 1.63 | 0.818 | 0.000262 | ||
NW California, 1941 | 1.77 | 0.817 | 0.000262 |
Arch Heights (m) | Fault | GMs | Motions (mm) | Max. Principal Stress (MPa) | Max. Principal Elastic Strain (mm/mm) |
---|---|---|---|---|---|
8 | NF | C. Mend, 1992 | 5.63 | 2.090 | 0.000681 |
Chi-Chi, 1999 | 1.97 | 0.890 | 0.000292 | ||
I. Valley, 1979 | 3.36 | 1.394 | 0.000452 | ||
Kobe, 1995 | 6.83 | 1.871 | 0.000639 | ||
Northridge, 1994 | 4.10 | 1.626 | 0.000528 | ||
S. Hills, 1987 | 4.11 | 1.627 | 0.000529 | ||
FF | B. Mount, 1968 | 1.52 | 0.622 | 0.000204 | |
Friuli, Italy, 1976 | 1.60 | 0.607 | 0.000196 | ||
Kobe, 1995 | 1.56 | 0.673 | 0.000218 | ||
M. Hill, 1984 | 1.53 | 0.638 | 0.000207 | ||
NW California, 1941 | 1.64 | 0.681 | 0.000231 |
Arch Heights (m) | Fault | GMs | Motions (mm) | Max. Principal Stress (MPa) | Max. Principal Elastic Strain (mm/mm) |
---|---|---|---|---|---|
9 | NF | C. Mend, 1992 | 5.52 | 2.035 | 0.000662 |
Chi-Chi, 1999 | 1.76 | 0.881 | 0.000287 | ||
I. Valley, 1979 | 3.22 | 0.611 | 0.000195 | ||
Kobe, 1995 | 6.72 | 0.611 | 0.000195 | ||
Northridge, 1994 | 3.97 | 0.614 | 0.000196 | ||
S. Hills, 1987 | 3.74 | 0.623 | 0.000194 | ||
FF | B. Mount, 1968 | 1.20 | 0.611 | 0.000195 | |
Friuli, Italy, 1976 | 1.23 | 0.610 | 0.000194 | ||
Kobe, 1995 | 1.21 | 0.609 | 0.000194 | ||
M. Hill, 1984 | 1.21 | 0.611 | 0.000195 | ||
NW California, 1941 | 1.36 | 0.610 | 0.000195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karalar, M.; Yeşil, M. Implications of Arch Warp Altitudes on an Ancient Masonry Bridge under Ground Movements. Appl. Sci. 2023, 13, 7395. https://doi.org/10.3390/app13137395
Karalar M, Yeşil M. Implications of Arch Warp Altitudes on an Ancient Masonry Bridge under Ground Movements. Applied Sciences. 2023; 13(13):7395. https://doi.org/10.3390/app13137395
Chicago/Turabian StyleKaralar, Memduh, and Mustafa Yeşil. 2023. "Implications of Arch Warp Altitudes on an Ancient Masonry Bridge under Ground Movements" Applied Sciences 13, no. 13: 7395. https://doi.org/10.3390/app13137395
APA StyleKaralar, M., & Yeşil, M. (2023). Implications of Arch Warp Altitudes on an Ancient Masonry Bridge under Ground Movements. Applied Sciences, 13(13), 7395. https://doi.org/10.3390/app13137395