Geometric Error Parameterization of a CMM via Calibrated Hole Plate Archived Utilizing DCC Formatting
Abstract
1. Introduction
2. Background and Example
2.1. Digital Calibration Certificates
2.2. The Example of Administrative Information in the XML
3. Experiments
- (1)
- Repeatability of CMM measurement
- (2)
- Resolution of the CMM
- (3)
- Traceability of the hole plate
- (4)
- Setup errors of the hole plate
- (5)
- Thermal expansion coefficient of CMM
- (6)
- Traceability of the thermometer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, R. Introduction to Basic Manufacturing Processes and Workshop Technology; New Age International: New Delhi, India, 2006. [Google Scholar]
- Besterfield, D.H. Quality Control; Pearson Education: Noida, India, 2004. [Google Scholar]
- Vâlcu, A.; Călin, A. Ensuring the validity of results by intermediate checks in the field of mass measurements. J. Phys. Conf. Ser. 2008, 1065, 042033. [Google Scholar] [CrossRef][Green Version]
- Ferreira, F.; De Vicente, J.; Sanchez, A.M. Evaluation of the performance of coordinate measuring machines in the industry, using calibrated artefacts. Procedia Eng. 2013, 63, 659–668. [Google Scholar] [CrossRef][Green Version]
- Hoang, X.L.; Fay, A.; Marks, P.; Weyrich, M. Systematization approach for the adaptation of manufacturing machines. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–4. [Google Scholar]
- Stalmachova, K.; Chinoracky, R.; Strenitzerova, M. Changes in business models caused by digital transformation and the COVID-19 pandemic and possibilities of their measurement—Case study. Sustainability 2022, 14, 127. [Google Scholar] [CrossRef]
- Soto-Acosta, P. COVID-19 Pandemic: Shifting Digital Transformation to a High-Speed Gear. Inf. Syst. Manag. 2020, 37, 260–266. [Google Scholar] [CrossRef]
- Iivari, N.; Sharma, S.; Ventä-Olkkonen, L. Digital transformation of everyday life—How COVID-19 pandemic transformed the basic education of the young generation and why information management research should care? Int. J. Inf. Manag. 2020, 55, 102183. [Google Scholar] [CrossRef]
- Hackel, S.; Härtig, F.; Hornig, J.; Wiedenhöfer, T. The Digital Calibration Certificate. PTB-Mitteilungen 2017, 4, 127. [Google Scholar]
- Brown, C.; Elo, T.; Hovhannisyan, K.; Hutzschenreuter, D.; Kuosmanen, P.; Maennel, O.; Mustapaa, T.; Nikander, P.; Wiedenhoefer, T. Infrastructure for Digital Calibration Certificates. In Proceedings of the IEEE International Workshop on Metrology for Industry 4.0 & IoT, Rome, Italy, 3–5 June 2020. [Google Scholar]
- Toro, F.G.; Lehmann, H. Brief overview of the future of metrology. Meas. Sens. 2021, 18, 100306. [Google Scholar] [CrossRef]
- Morse, E.; Heysiattalab, S.; Barnard-Feeney, A.; Hedberg, T., Jr. Interoperability: Linking Design and Tolerancing with Metrology. Procedia CIRP 2016, 43, 13–16. [Google Scholar] [CrossRef][Green Version]
- Campbell, D.; Brown, C.; Brown, R.; Herron, J.; Admire, R.; Horst, J.; Leland, C.; Stahl, R. Why QIF Matters—A Roadmap for Digital Manufacturing. Model-Based Enterp. Summit 2019, 58–63. [Google Scholar]
- Zhao, Y.F.; Horst, J.A.; Kramer, T.R.; Rippey, W.; Brown, R.J. Quality information framework–integrating metrology processes. IFAC Proc. Vol. 2012, 45, 1301–1308. [Google Scholar] [CrossRef]
- Mustapää, T.; Nummiluikki, J.; Viitala, R. Digitalization of Calibration Data Management in Pharmaceutical Industry Using a Multitenant Platform. Appl. Sci. 2022, 12, 7531. [Google Scholar] [CrossRef]
- Marques, M.; Sousa, J.A.; Ribeiro, L. Calibration 4.0–Information system for usage of digital calibration certificates. In Proceedings of the 19th International Congress of Metrology (CIM2019), Paris, France, 24–26 September 2019; p. 01002. [Google Scholar]
- Boschung, G.; Wollensack, M.; Zeier, M.; Blaser, C.; Hof, C.; Stathis, M.; Blattner, P.; Stuker, F.; Basic, N.; Toro, F.G. PDF/A-3 solution for digital calibration certificates. Meas. Sens. 2021, 18, 100282. [Google Scholar] [CrossRef]
- Yadav, N.; Shankar, R.; Singh, S.P. Impact of Industry 4.0/ICTs, Lean Six Sigma and quality management systems on organisational performance. TQM J. 2020, 32, 815–835. [Google Scholar] [CrossRef]
- Kumar, G.; Bakshi, A.; Khandelwal, A.; Panchal, A.; Soni, U. Analyzing Industry 4.0 Implementation Barriers in Indian SMEs. J. Ind. Integr. Manag. 2022, 7, 153–169. [Google Scholar] [CrossRef]
- Ačko, B.; Weber, H.; Hutzschenreuter, D.; Smith, I. Communication and Validation of Metrological Smart Data in IoT-Networks. Adv. Prod. Eng. Manag. 2020, 15, 107–117. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Gadelrab, M.S.; Abouhogail, R.A. Towards a new generation of digital calibration certificate: Analysis and survey. Measurement 2021, 181, 109611. [Google Scholar] [CrossRef]
- Petrillo, A.; Felice, F.D.; Cioffi, R.; Zomparelli, F. Fourth Industrial Revolution: Current Practices, Challenges, and Opportunities. In Digital Transformation in Smart Manufacturing; Petrillo, A., Cioffi, R., Felice, F.D., Eds.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Mustapää, T.; Nikander, P.; Hutzschenreuter, D.; Viitala, R. Metrological challenges in collaborative sensing: Applicability of digital calibration certificates. Sensors 2020, 20, 4730. [Google Scholar] [CrossRef]
- Varshney, A.; Garg, N.; Nagla, K.S.; Nair, T.S.; Jaiswal, S.K.; Yadav, S.; Aswal, D.K. Challenges in sensors technology for industry 4.0 for futuristic metrological applications. MAPAN 2021, 36, 215–226. [Google Scholar]
- Hackel, S.; Härtig, F.; Schrader, T.; Scheibner, A.; Loewe, J.; Doering, L.; Gloger, B.; Jagieniak, J.; Hutzschenreuter, D.; Söylev-Öktem, G. The fundamental architecture of the DCC. Meas. Sens. 2021, 18, 100354. [Google Scholar] [CrossRef]
- Bruns, T.; Nordholz, J.; Röske, D.; Schrader, T. A demonstrator for measurement workflows using digital calibration certificates (DCCs). Meas. Sens. 2021, 18, 100208. [Google Scholar] [CrossRef]
- Röske, D. A visual tool for generating digital calibration certificates (DCCs) in Excel. Meas. Sens. 2021, 18, 100175. [Google Scholar] [CrossRef]
- ISO 230-1:2012; Test Code for Machine Tools—Part 1: Geometric Accuracy of Machines Operating under No-Load or Quasi-Static Conditions. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 230-7: 2015; Test Code for Machine Tools—Part 7: Geometric Accuracy of Axes of Rotation. International Organization for Standardization: Geneva, Switzerland, 2015.
- Trapet, E.; Wäldele, F. A reference object based method to determine the parametric error components of coordinate measuring machines and machine tools. Measurement 1991, 9, 17–22. [Google Scholar] [CrossRef]
- Lee, E.S.; Burdekin, M. A hole-plate artifact design for the volumetric error calibration of CMM. Int. J. Adv. Manuf. Technol. 2001, 17, 508–515. [Google Scholar] [CrossRef]
- Sładek, J.A. Coordinate Metrology: Accuracy of Systems and Measurements. In Springer Tracts in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-48463-0. [Google Scholar]
- Takatsuji, T.; Eom, T.; Tonmueanwai, A.; Yin, R.; van der Walt, F.; Gao, S.; Thu, B.Q.; Singhai, R.P.; Howick, E.; Doytchinov, K.; et al. Final report on APMP regional key comparison APMP. L-K6: Calibration of ball plate and hole plate. Metrologia 2014, 51, 04003. [Google Scholar] [CrossRef]
- Miura, Y.; Nakanishi, S.; Higuchi, E.; Takamasu, K.; Abe, M.; Sato, O. Comparative evaluation of estimation of hole plate measurement uncertainty via Monte Carlo simulation. Precis. Eng. 2019, 56, 496–505. [Google Scholar] [CrossRef]
- Kim, Y.H.; Han, S.-S.; Choi, Y.J.; Woo, C.-W. Linear Accuracy of Full-Arch Digital Models Using Four Different Scanning Methods: An In Vitro Study Using a Coordinate Measuring Machine. Appl. Sci. 2020, 10, 2741. [Google Scholar] [CrossRef][Green Version]
- Kritikos, M.; Maure, L.C.; Céspedes, A.A.L.; Sobrino, D.R.D.; Hrušecký, R. A Random Factorial Design of Experiments Study on the Influence of Key Factors and Their Interactions on the Measurement Uncertainty: A Case Study Using the ZEISS CenterMax. Appl. Sci. 2020, 10, 37. [Google Scholar] [CrossRef][Green Version]
- Riska, K. Digital Calibration Certificate as Part of an Ecosystem. Master’s Thesis, Novia University of Applied Sciences, Vaasa, Finland, 2022. [Google Scholar]
- Schema Documentation for dcc.xsd. Available online: https://www.ptb.de/dcc/v3.2.0/autogenerated-docs/Doku%20Oxygen%203.2.0.html (accessed on 7 March 2023).
- IEC TS 62720; Identification of Units of Measurements for Computer-Based Processing. iTeh Standards: Etobicoke, ON, Canada, 2017.
- Gapinski, B.; Grzelka, M.; Rucki, M. The accuracy analysis of the roundness measurement with coordinate measuring machines. In Proceedings of the XVIII Imeko World Congress, Metrology for a Suistainable Development, Rio de Janeiro, Brazil, 17−22 September 2006. [Google Scholar]
- Gass, S.I.; Witzgall, C.; Harary, H.H. Fitting circles and spheres to coordinate measuring machine data. Int. J. Flex. Manuf. Syst. 1998, 10, 5–25. [Google Scholar] [CrossRef]
- ISO 230-2: 2014; Test Code for Machine Tools—Part 2: Determination of Accuracy and Repeatability of Positioning Numerically Controlled Axes. International Organization for Standardization: Geneva, Switzerland, 2014.
- Lee, H.-W.; Chen, J.-R.; Pan, S.-P.; Liou, H.-C.; Hsu, P.E. Relationship between ISO 230-2/-6 Test Results and Positioning Accuracy of Machine Tools Using Lasertracer. Appl. Sci. 2016, 6, 105. [Google Scholar] [CrossRef][Green Version]
- ISO 230-6; Test Code for Machine Tools—Part 6: Determination of Positioning Accuracy on Body and Face Diagonals (Diagonal Displacement Tests). ISO: Geneva, Switzerland, 2002.
- ISO 10360-2; Geometrical Product Specifications (GPS)—Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM)—Part 2: CMMs Used for Measuring Linear Dimensions. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO/IEC Guide 98-3: 2008; Uncertainty of Measurement–Part 3: Guide to the Expression of Uncertainty in Measurement. ISO: Geneva, Switzerland, 2008.
Axial | Symbols Used in This Thesis | Definition of Geometric Errors |
---|---|---|
X-axis | Exx | Position error |
Eyx | Horizontal straightness error | |
Ezx | Vertical straightness error | |
Eax | Roll error | |
Ebx | Pitch error | |
Ecx | Yaw error | |
Y-axis | Exy | Horizontal straightness error |
Eyy | Position error error | |
Ezy | Vertical straightness error | |
Eay | Pitch error | |
Eby | Roll error | |
Ecy | Yaw error | |
Z-axis | Exz | Horizontal straightness error |
Eyz | Vertical straightness error | |
Ezz | Position error | |
Eaz | Pitch error | |
Ebz | Yaw error | |
Ecz | Roll error | |
Squareness between axes | Ecox | Squareness of X to Y |
Eaoz | Squareness of Z to Y | |
Eboz | Squareness of Z to X |
Standard Uncertainty | Type | Degree of Freedom | |||
---|---|---|---|---|---|
Traceability of the hole plate, u(ls1) | B | 0.34 μm | 1 | 0.34 μm | 200 |
Setup errors of the hole plate, u(ls2) | B | 0.01 μm | 1 | 0.01 μm | 50 |
Thermal expansion coefficient of CMM, u(α) | B | 82,500 | 0.26 μm | 50 | |
Traceability of the thermometer, u (ΔT) | B | 0.04 | 0.24 μm | 50 | |
Resolution of the CMM, u(l1) | B | 0.03 μm | 1 | 0.03 μm | 50 |
Repeatability of CMM measurement, u(l2) | A | 0.16 μm | 1 | 0.16 μm | 5 |
Combined standard uncertainty (uc): 0.52 μm Effective degrees of freedom (νeff): 237 Expanded uncertainty (95% confidence level):1.03 μm (k = 1.97) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.-X.; Hsieh, T.-H. Geometric Error Parameterization of a CMM via Calibrated Hole Plate Archived Utilizing DCC Formatting. Appl. Sci. 2023, 13, 6344. https://doi.org/10.3390/app13106344
Lin M-X, Hsieh T-H. Geometric Error Parameterization of a CMM via Calibrated Hole Plate Archived Utilizing DCC Formatting. Applied Sciences. 2023; 13(10):6344. https://doi.org/10.3390/app13106344
Chicago/Turabian StyleLin, Ming-Xian, and Tsung-Han Hsieh. 2023. "Geometric Error Parameterization of a CMM via Calibrated Hole Plate Archived Utilizing DCC Formatting" Applied Sciences 13, no. 10: 6344. https://doi.org/10.3390/app13106344
APA StyleLin, M.-X., & Hsieh, T.-H. (2023). Geometric Error Parameterization of a CMM via Calibrated Hole Plate Archived Utilizing DCC Formatting. Applied Sciences, 13(10), 6344. https://doi.org/10.3390/app13106344