Variability and Complexity of Knee Neuromuscular Control during an Isometric Task in Uninjured Physically Active Adults: A Secondary Analysis Exploring Right/Left and Dominant/Nondominant Asymmetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Ethical Approval, Informed Consent, Participants
2.2. Original Experimental Procedures
2.3. Dynamometry
2.4. Isometric Knee Extension Efforts
2.5. Data Acquisition and Reduction
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kennedy, M.; Dunne, C.; Mulcahy, B.; Molloy, M. The sports clinic: A one year review of new referrals. Ir. Med. J. 1993, 86, 29–30. [Google Scholar] [PubMed]
- Sarimo, J.; Rantanen, J.; Heikkilä, J.; Helttula, I.; Hiltunen, A.; Orava, S. Acute traumatic hemarthrosis of the knee. Is routine arthroscopic examination necessary? A study of 320 consecutive patients. Scand. J. Surg. 2002, 91, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Finch, C.; Cassell, E. The public health impact of injury during sport and active recreation. J. Sci. Med. Sport 2006, 9, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Lubowitz, J.H.; Appleby, D. Cost-Effectiveness Analysis of the Most Common Orthopaedic Surgery Procedures: Knee Arthroscopy and Knee Anterior Cruciate Ligament Reconstruction. Arthroscopy 2011, 27, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Lohmander, L.; Englund, P.; Dahl, L.; Roos, E. The Long-term Consequence of Anterior Cruciate Ligament and Meniscus Injuries: Osteoarthritis. Am. J. Sports Med. 2007, 35, 1756–1769. [Google Scholar] [CrossRef] [Green Version]
- Avery, J. Accident prevention-injury control-injury prevention-or whatever? Inj. Prev. 1995, 1, 10–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, N.C. Functional performance testing following knee ligament injury. Phys. Ther. Sport 2001, 2, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Clark, N.C. Noncontact knee ligament injury prevention screening in netball: A clinical commentary with clinical practice suggestions for community-level players. Int. J. Sports Phys. Ther. 2021, 16, 911–929. [Google Scholar] [CrossRef]
- Newton, R.; Gerber, A.; Nimphius, S.; Shim, J.; Doan, B.; Robertson, M.; Pearson, D.; Craig, B.; Häkkinen, K.; Kraemer, W. Determination of functional strength imbalance of the lower extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar]
- McGrath, T.; Waddington, G.; Scarvell, J.; Ball, N.; Creer, R.; Woods, K.; Smith, D. The effect of limb dominance on lower limb functional performance—A systematic review. J. Sports Sci. 2016, 34, 289–302. [Google Scholar] [CrossRef]
- Magee, D. Orthopedic Physical Assessment, 6th ed.; Elsevier: St. Louis, MO, USA, 2014. [Google Scholar]
- Portney, L.; Watkins, M. Foundations of Clinical Research: Applications to Practice, 3rd ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Clark, N.C.; Mullally, E.M. Prevalence and magnitude of preseason clinically-significant single-leg balance and hop test asymmetries in an English adult netball club. Phys. Ther. Sport 2019, 40, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.C.; Clacher, L.H. Lower-limb motor-performance asymmetries in English community-level female field hockey players: Implications for knee and ankle injury prevention. Phys. Ther. Sport 2020, 43, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Riemann, B.; Lephart, S. The sensorimotor system, part I: The physiologic basis of functional joint stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar] [PubMed]
- Lipsitz, L.; Goldberger, A. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. J. Am. Med. Assoc. 1992, 267, 1806–1809. [Google Scholar] [CrossRef]
- Slifkin, A.B.; Newell, K.M. Noise, information transmission, and force variability. J. Exp. Psychol. 1999, 25, 837–851. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef] [Green Version]
- Enoka, R.M.; Christou, E.A.; Hunter, S.K.; Kornatz, K.W.; Semmler, J.G.; Taylor, A.M.; Tracy, B.L. Mechanisms that contribute to differences in motor performance between young and old adults. J. Electromyogr. Kinesiol. 2003, 13, 1–12. [Google Scholar] [CrossRef]
- Pethick, J.; Winter, S.L.; Burnley, M. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man. J. Physiol. 2015, 593, 2085–2096. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99, 2466–2472. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Paraschiv-Ionescu, A.; Buchser, E.; Rutschmann, B.; Aminian, K. Nonlinear analysis of human physical activity patterns in health and disease. Phys. Rev. E 2008, 77, 021913. [Google Scholar] [CrossRef] [PubMed]
- Tigrini, A.; Verdini, F.; Fioretti, S.; Mengarelli, A. Long term correlation and inhomogeneity of the inverted pendulum sway time-series under the intermittent control paradigm. Commun. Nonlinear Sci. Numer. Simul. 2022, 108, 106198. [Google Scholar] [CrossRef]
- Marmelat, V.; Meidinger, R.L. Fractal analysis of gait in people with Parkinson’s disease: Three minutes is not enough. Gait Posture 2019, 70, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, D.; Newell, K. Aging and the time and frequency structure of force output variability. J. Appl. Physiol. 2003, 94, 903–912. [Google Scholar] [CrossRef] [Green Version]
- Goetschius, J.; Hart, J.M. Knee-extension torque variability and subjective knee function in patients with a history of anterior cruciate ligament reconstruction. J. Athl. Train. 2016, 51, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Hollman, J.H.; Nagai, T.; Bates, N.A.; McPherson, A.L.; Schilaty, N.D. Diminished neuromuscular system adaptability following anterior cruciate ligament injury: Examination of knee muscle force variability and complexity. Clin. Biomech. 2021, 90, 105513. [Google Scholar] [CrossRef]
- Gibson, F.; Fern, L.A.; Phillips, B.; Gravestock, H.; Malik, S.; Callaghan, A.; Dyker, K.; Groszmann, M.; Hamrang, L.; Hough, R. Reporting the whole story: Analysis of the ‘out-of-scope’questions from the James Lind Alliance Teenage and Young Adult Cancer Priority Setting Partnership Survey. Health Expect. 2021, 24, 1593–1606. [Google Scholar] [CrossRef]
- Boslaugh, S. Secondary Data Sources for Public Health. A Practical Guide; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Lewis-Beck, M.; Bryaman, A.; Liao, T. Secondary Analysis of Quantitative Data—The SAGE Encyclopedia of Social Science Research Methods; Sage Publications: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Pethick, J.; Winter, S.L.; Burnley, M. Effects of ipsilateral and contralateral fatigue and muscle blood flow occlusion on the complexity of knee-extensor torque output in humans. Exp. Physiol. 2018, 103, 956–967. [Google Scholar] [CrossRef] [Green Version]
- Pethick, J.; Whiteaway, K.; Winter, S.L.; Burnley, M. Prolonged depression of knee-extensor torque complexity following eccentric exercise. Exp. Physiol. 2019, 104, 100–111. [Google Scholar] [CrossRef]
- Lisee, C.; Slater, L.; Hertel, J.; Hart, J.M. Effect of sex and level of activity on lower-extremity strength, functional performance, and limb symmetry. J. Sport Rehabil. 2019, 28, 413–420. [Google Scholar] [CrossRef]
- Peng, C.-K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrest, S.M.; Challis, J.H.; Winter, S.L. The effect of signal acquisition and processing choices on ApEn values: Towards a “gold standard” for distinguishing effort levels from isometric force records. Med. Eng. Phys. 2014, 36, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Pethick, J.; Winter, S.L.; Burnley, M. Relationship between muscle metabolic rate and muscle torque complexity during fatiguing intermittent isometric contractions in humans. Physiol. Rep. 2019, 7, e14240. [Google Scholar] [CrossRef]
- DiStefano, L.; Martinez, J.; Crowley, E.; Matteau, E.; Kerner, M.; Boling, M.; Nguyen, A.; Trojian, T. Maturation and sex differences in neuromuscular characteristics of youth athletes. J. Strength Cond. Res. 2015, 29, 2465–2473. [Google Scholar] [CrossRef]
- Adam, A.; Luca, C.J.D.; Erim, Z. Hand dominance and motor unit firing behavior. J. Neurophysiol. 1998, 80, 1373–1382. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, M.; Felici, F.; Marchetti, M.; Montellanico, F.; Piacentini, M.; Solomonow, M. Force generation performance and motor unit recruitment strategy in muscles of contralateral limbs. J. Electromyogr. Kinesiol. 1999, 9, 121–130. [Google Scholar] [CrossRef]
- Vaillancourt, D.; Slifkin, A.; Newell, K. Regularity of force tremor in Parkinson’s disease. Clin. Neurophysiol. 2001, 112, 1594–1603. [Google Scholar] [CrossRef]
- Pethick, J.; Winter, S.L.; Burnley, M. Fatigue reduces the complexity of knee extensor torque during fatiguing sustained isometric contractions. Eur. J. Sport Sci. 2019, 19, 1349–1358. [Google Scholar] [CrossRef]
- Negro, F.; Holobar, A.; Farina, D. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates. J. Physiol. 2009, 587, 5925–5938. [Google Scholar] [CrossRef]
- Farina, D.; Negro, F. Common synaptic input to motor neurons, motor unit synchronization, and force control. Exerc. Sport Sci. Rev. 2015, 43, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Schmied, A.; Vedel, J.-P.; Pagni, S. Human spinal lateralization assessed from motoneurone synchronization: Dependence on handedness and motor unit type. J. Physiol. 1994, 480, 369–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.; Sharma, S.; Bilodeau, M. Neuromuscular fatigue of elbow flexor muscles of dominant and non-dominant arms in healthy humans. J. Electromyogr. Kinesiol. 2002, 12, 287–294. [Google Scholar] [CrossRef]
- Hoenig, J.M.; Heisey, D.M. The abuse of power: The pervasive fallacy of power calculations for data analysis. Am. Stat. 2001, 55, 19–24. [Google Scholar] [CrossRef]
CV (%) | CV (%) | |||||
---|---|---|---|---|---|---|
R | L | R-L | D | ND | D-ND | |
Absolute | Absolute | |||||
Diff. | Diff. | |||||
Min | 2.01 | 2.28 | 0.02 | 2.22 | 2.01 | 0.02 |
Max | 3.51 | 6.20 | 3.64 | 3.51 | 6.20 | 3.64 |
95% CI | 2.53, 2.96 | 2.67, 3.82 | 0.20, 1.22 | 2.54, 2.93 | 2.68, 3.83 | 0.20, 1.22 |
Mean | 2.75 | 3.24 | 0.71 | 2.74 | 3.25 | 0.71 |
SD | 0.40 | 1.07 | 0.96 | 0.37 | 1.08 | 0.96 |
ES | 0.45 | 0.47 |
ApEn | ApEn | |||||
---|---|---|---|---|---|---|
R | L | R-L | D | ND | D-ND | |
Absolute | Absolute | |||||
Diff. | Diff. | |||||
Min | 0.25 | 0.14 | 0.01 | 0.25 | 0.14 | 0.01 |
Max | 0.65 | 0.54 | 0.29 | 0.65 | 0.62 | 0.29 |
95% CI | 0.37, 0.50 | 0.31, 0.42 | 0.06, 0.14 | 0.34, 0.46 | 0.33, 0.46 | 0.06, 0.14 |
Mean | 0.43 | 0.36 | 0.10 | 0.40 | 0.39 | 0.10 |
SD | 0.12 | 0.10 | 0.07 | 0.11 | 0.13 | 0.07 |
ES | 0.73 | 0.08 |
DFA α | DFA α | |||||
---|---|---|---|---|---|---|
R | L | R-L | D | ND | D-ND | |
Absolute | Absolute | |||||
Diff. | Diff. | |||||
Min | 1.17 | 1.26 | 0.00 | 1.26 | 1.17 | 0.00 |
Max | 1.52 | 1.62 | 0.21 | 1.56 | 1.62 | 0.21 |
95% CI | 1.33, 1.47 | 1.40, 1.50 | 0.04, 0.99 | 1.36, 1.45 | 1.38, 1.49 | 0.41, 0.99 |
Mean | 1.38 a | 1.45 | 0.07 | 1.40 | 1.43 | 0.07 |
SD | 0.10 | 0.09 | 0.06 | 0.09 | 0.11 | 0.06 |
ES | 1.12 | 0.34 |
CV | CV | |||
---|---|---|---|---|
R/L | R/L | D/ND | D/ND | |
Limb | Absolute | Limb | Absolute | |
Symm. | Asymm. | Symm. | Asymm. | |
Index | (%) | Index | (%) | |
(%) | (%) | |||
Min | 41.2 | 0.7 | 41.2 | 0.7 |
Max | 131.2 | 58.8 | 120.7 | 58.8 |
95% CI | 78.3, 102.3 | 9.7, 26.7 | 78.2, 101.7 | 9.7, 26.4 |
Mean | 90.3 | 18.2 | 90.0 | 18.0 |
SD | 22.6 | 16.0 | 22.0 | 15.7 |
ApEn | ApEn | |||
---|---|---|---|---|
R/L | R/L | D/ND | D/ND | |
Limb | Absolute | Limb | Absolute | |
Symm. | Asymm. | Symm. | Asymm. | |
Index | (%) | Index | (%) | |
(%) | (%) | |||
Min | 58.3 | 2.4 | 58.3 | 2.4 |
Max | 309.6 | 209.6 | 309.6 | 209.6 |
95% CI | 99.6, 156.1 | 8.5, 60.4 | 83.2, 144.2 | 6.4, 58.2 |
Mean | 127.9 | 34.5 | 113.7 | 32.3 |
SD | 53.0 | 48.6 | 57.2 | 48.6 |
DFA α | DFA α | |||
---|---|---|---|---|
R/L | R/L | D/ND | D/ND | |
Limb | Absolute | Limb | Absolute | |
Symm. | Asymm. | Symm. | Asymm. | |
Index | (%) | Index | (%) | |
(%) | (%) | |||
Min | 86.8 | 0.3 | 86.8 | 0.3 |
Max | 101.7 | 13.2 | 108.1 | 13.2 |
95% CI | 93.2, 97.7 | 3.0, 6.9 | 94.9, 101.4 | 3.0, 7.0 |
Mean | 95.5 | 4.9 | 98.2 | 5.0 |
SD | 4.2 | 3.7 | 6.1 | 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, N.C.; Pethick, J. Variability and Complexity of Knee Neuromuscular Control during an Isometric Task in Uninjured Physically Active Adults: A Secondary Analysis Exploring Right/Left and Dominant/Nondominant Asymmetry. Appl. Sci. 2022, 12, 4762. https://doi.org/10.3390/app12094762
Clark NC, Pethick J. Variability and Complexity of Knee Neuromuscular Control during an Isometric Task in Uninjured Physically Active Adults: A Secondary Analysis Exploring Right/Left and Dominant/Nondominant Asymmetry. Applied Sciences. 2022; 12(9):4762. https://doi.org/10.3390/app12094762
Chicago/Turabian StyleClark, Nicholas C., and Jamie Pethick. 2022. "Variability and Complexity of Knee Neuromuscular Control during an Isometric Task in Uninjured Physically Active Adults: A Secondary Analysis Exploring Right/Left and Dominant/Nondominant Asymmetry" Applied Sciences 12, no. 9: 4762. https://doi.org/10.3390/app12094762
APA StyleClark, N. C., & Pethick, J. (2022). Variability and Complexity of Knee Neuromuscular Control during an Isometric Task in Uninjured Physically Active Adults: A Secondary Analysis Exploring Right/Left and Dominant/Nondominant Asymmetry. Applied Sciences, 12(9), 4762. https://doi.org/10.3390/app12094762