Asymmetry of Optic Nerve Head Parameters Measured by Confocal Scanning Laser Ophthalmoscopy in Myopic Anisometropic Eyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Subjects
2.3. Inclusion and Exclusion Criteria
2.4. Visual Field Testing
2.5. HRT Imaging
2.6. Statistical Analysis
3. Results
3.1. Comparisons of ONH Parameters between Both Eyes Measured with HRT
3.2. Correlations between Inter-Eye Differences in ONH Parameters and SE/AL
3.3. Factors Associated with Cup/Disc Ratio Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tielsch, J.M.; Katz, J.; Singh, K.; Quigley, H.A.; Gottsch, J.D.; Javitt, J.; Sommer, A. A population-based evaluation of glaucoma screening: The Baltimore Eye Survey. Am. J. Epidemiol. 1991, 134, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.M.; Burke, J.F., Jr. Why do some people go blind from glaucoma? Ophthalmology 1982, 89, 991–998. [Google Scholar] [CrossRef]
- Lichter, P.R.; Musch, D.C.; Gillespie, B.W.; Guire, K.E.; Janz, N.K.; Wren, P.A.; Mills, R.P.; CIGTS Study Group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001, 108, 1943–1953. [Google Scholar] [CrossRef]
- Wilson, R.; Walker, A.M.; Dueker, D.K.; Crick, R.P. Risk factors for rate of progression of glaucomatous visual field loss: A computer-based analysis. Arch. Ophthalmol. 1982, 100, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Wolfs, R.C.; Borger, P.H.; Ramrattan, R.S.; Klaver, C.; Hulsman, C.; Hofman, A.; Vingerling, J.R.; Hitchings, R.; De Jong, P.T. Changing views on open-angle glaucoma: Definitions and prevalences—The Rotterdam Study. Invest. Ophthalmol. Vis. Sci. 2000, 41, 3309–3321. [Google Scholar] [PubMed]
- Fishman, R.S. Optic disc asymmetry—A sign of ocular hypertension. Arch. Ophthalmol. 1970, 84, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A.; Enger, C.; Katz, J.; Sommer, A.; Scott, R.; Gilbert, D. Risk factors for the development of glaucomatous visual field loss in ocular hypertension. Arch. Ophthalmol. 1994, 112, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Feuer, W.J.; Anderson, D.R. Static threshold asymmetry in early glaucomatous visual field loss. Ophthalmology 1989, 96, 1285–1297. [Google Scholar] [CrossRef]
- Katz, J.; Tielsch, J.M.; Sommer, A. Prevalence and risk factors for refractive errors in an adult inner city population. Invest. Ophthalmol. Vis. Sci. 1997, 38, 334–340. [Google Scholar] [PubMed]
- Mitchell, P.; Hourihan, F.; Sandbach, J.; Wang, J.J. The relationship between glaucoma and myopia: The Blue Mountains Eye Study. Ophthalmology 1999, 106, 2010–2015. [Google Scholar] [CrossRef]
- Miglior, S.; Guareschi, M.; Albe, E.; Gomarasca, S.; Vavassori, M.; Orzalesi, N. Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. Am. J. Ophthalmol. 2003, 136, 26–33. [Google Scholar] [CrossRef]
- Abe, H.; Shirakashi, M.; Tsutsumi, T.; Araie, M.; Tomidokoro, A.; Iwase, A.; Tomita, G.; Yamamoto, T. Laser scanning tomography of optic discs of the normal Japanese population in a population-based setting. Ophthalmology 2009, 116, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Hawker, M.J.; Vernon, S.A.; Ainsworth, G.; Hillman, J.G.; MacNab, H.K.; Dua, H.S. Asymmetry in optic disc morphometry as measured by heidelberg retina tomography in a normal elderly population: The Bridlington Eye Assessment Project. Invest. Ophthalmol. Vis. Sci. 2005, 46, 4153–4158. [Google Scholar] [CrossRef] [PubMed]
- Hermann, M.M.; Theofylaktopoulos, I.; Bangard, N.; Jonescu-Cuypers, C.; Coburger, S.; Diestelhorst, M. Optic nerve head morphometry in healthy adults using confocal laser scanning tomography. Br. J. Ophthalmol. 2004, 88, 761–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, M.; Boland, M.V.; Ramulu, P.Y. Cup-to-Disc Ratio Asymmetry in U.S. Adults: Prevalence and Association with Glaucoma in the 2005–2008 National Health and Nutrition Examination Survey. Ophthalmology 2017, 124, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B. Optic disk size correlated with refractive error. Am. J. Ophthalmol. 2005, 139, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, L.; Zhang, L.; Yang, H.; Ma, Y.; Jonas, J.B. Optic disc size in a population based study in northern China: The Beijing Eye Study. Br. J. Ophthalmol. 2006, 90, 353–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramrattan, R.S.; Wolfs, R.C.; Jonas, J.B.; Hofman, A.; De Jong, P.T. Determinants of optic disc characteristics in a general population: The Rotterdam Study. Ophthalmology 1999, 106, 1588–1596. [Google Scholar] [CrossRef]
- Leung, C.K.; Cheng, A.C.; Chong, K.K.; Leung, K.S.; Mohamed, S.; Lau, C.S.; Cheung, C.Y.; Chu, G.C.; Lai, R.Y.; Pang, C.C.; et al. Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest. Ophthalmol. Vis. Sci. 2007, 48, 3178–3183. [Google Scholar] [CrossRef] [PubMed]
More Myopic Eye Group (n = 18) | Less Myopic Eye Group (n = 18) | P # | |
---|---|---|---|
SE (diopters, mean ± SD) | −5.15 ± 1.81 | −2.95 ± 1.94 | <0.001 |
Inter-eye difference in SE (diopters, mean ± SD) | 2.20 ± 0.62 | 2.20 ± 0.62 | |
AL (mm, mean ± SD) | 25.37 ± 1.38 | 24.52 ± 1.29 | <0.001 |
Age (years, mean ± SD) | 23.63 ± 5.25 | 23.63 ± 5.25 | |
Sex (n female/n male) | 8/10 | 8/10 |
More Myopic Eye Group (n = 18) | Less Myopic Eye Group (n = 18) | Mean Inter-Eye Difference | P | |
---|---|---|---|---|
Cup area (mm2, mean ± SD) | 0.37 ± 0.30 | 0.52 ± 0.32 | 0.14 ± 0.26 | 0.032 |
Cup/disc area ratio (mean ± SD) | 0.17 ± 0.10 | 0.24 ± 0.11 | 0.07 ± 0.11 | 0.027 |
Disc area (mm2, mean ± SD) | 1.96 ± 0.52 | 2.07 ± 0.57 | 0.11 ± 0.34 | 0.194 |
Horizontal CDR (mean ± SD) | 0.45 ± 0.16 | 0.55 ± 0.13 | 0.10 ± 0.17 | 0.033 |
Rim/disc area ratio (mean ± SD) | 0.83 ± 0.10 | 0.76 ± 0.11 | 0.07 ± 0.11 | 0.027 |
Vertical CDR (mean ± SD) | 0.26 ± 0.15 | 0.39 ± 0.17 | 0.13 ± 0.18 | 0.008 |
Linear CDR (mean ± SD) | 0.40 ± 0.12 | 0.47 ± 0.12 | 0.07 ± 0.13 | 0.025 |
Rim area (mm2, mean ± SD) | 1.59 ± 0.32 | 1.55 ± 0.40 | 0.04 ± 0.22 | 0.505 |
Inter-Eye Difference in Parameters (Valueless myopic eye–Valuemore myopic eye) | Correlation with Inter-Eye Difference in AL(Valuemore myopic eye–Valueless myopic eye) r (P) (n = 18) | Correlation with Inter-Eye Difference in SE (Valueless myopic eye–Valuemore myopic eye) r (P) (n = 18) |
---|---|---|
Inter-eye difference in cup area | 0.61 (0.008) | 0.60 (0.009) |
Inter-eye difference in cup/disc area ratio | 0.57 (0.014) | 0.61 (0.007) |
Inter-eye difference in disc area | 0.48 (0.043) | 0.49 (0.041) |
Inter-eye difference in horizontal CDR | 0.48 (0.043) | 0.56 (0.016) |
Inter-eye difference in rim/disc area ratio | −0.57 (0.014) | −0.61 (0.007) |
Inter-eye difference in vertical CDR | 0.60 (0.009) | 0.62 (0.006) |
Inter-eye difference in linear CDR | 0.56 (0.017) | 0.62 (0.007) |
Inter-eye difference in rim area | 0.02 (0.939) | 0.04 (0.887) |
Cup/Disc Area Ratio | Vertical CDR | Horizontal CDR | ||||
---|---|---|---|---|---|---|
β | P | β | P | β | P | |
SE | 0.184 | 0.508 | 0.342 | 0.230 | 0.189 | 0.557 |
AL | 0.126 | 0.450 | 0.281 | 0.330 | 0.083 | 0.799 |
Disc area | 0.561 | 0.001 | 0.499 | 0.003 | 0.318 | 0.076 |
Inter-Eye Difference in Cup/Disc Area Ratio | Inter-Eye Difference in Vertical CDR | Inter-Eye Difference in Horizontal CDR | ||||
---|---|---|---|---|---|---|
β | P | β | P | β | P | |
Inter-eye difference in AL | 0.408 | 0.092 | 0.495 | 0.048 | 0.289 | 0.242 |
Inter-eye difference in Disc area | 0.332 | 0.164 | 0.212 | 0.371 | 0.399 | 0.113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Lu, X.; Wang, G. Asymmetry of Optic Nerve Head Parameters Measured by Confocal Scanning Laser Ophthalmoscopy in Myopic Anisometropic Eyes. Appl. Sci. 2022, 12, 4047. https://doi.org/10.3390/app12084047
Gong W, Lu X, Wang G. Asymmetry of Optic Nerve Head Parameters Measured by Confocal Scanning Laser Ophthalmoscopy in Myopic Anisometropic Eyes. Applied Sciences. 2022; 12(8):4047. https://doi.org/10.3390/app12084047
Chicago/Turabian StyleGong, Weifen, Xuehui Lu, and Geng Wang. 2022. "Asymmetry of Optic Nerve Head Parameters Measured by Confocal Scanning Laser Ophthalmoscopy in Myopic Anisometropic Eyes" Applied Sciences 12, no. 8: 4047. https://doi.org/10.3390/app12084047
APA StyleGong, W., Lu, X., & Wang, G. (2022). Asymmetry of Optic Nerve Head Parameters Measured by Confocal Scanning Laser Ophthalmoscopy in Myopic Anisometropic Eyes. Applied Sciences, 12(8), 4047. https://doi.org/10.3390/app12084047