Expanding the Sediment Transport Tracking Possibilities in a River Basin through the Development of a Digital Platform—DNS/SWAT
Abstract
:1. Introduction
2. Digital Platform—DNS with SWAT Module
- − A digital elevation model (DEM) for information on the watercourse stream network and length, drainage pattern of the watershed, channel width within the watershed, slope, and reach length;
- − A map of hydrographical divisions in order to divide the basin area into sub-basins;
- − land use maps and agrotechnical data for determining land cover classes;
- − A soil map—detailed data on soil types to identify soil classes and their physical properties such as available water content, soil texture, soil bulk density, hydraulic conductivity, and organic matter;
- − Meteorological data for precipitation, temperature, humidity, wind speed and direction, and solar radiation.
2.1. Land Phase
2.1.1. Surface Runoff
2.1.2. Erosion
2.2. Riverbed Phase
3. Using the Digital Platform—DNS/SWAT
3.1. Sediment Yield—Land Phase Simulation
3.2. Suspended Sediment Load—Riverbed Phase
4. Digital Platform—DNS/SWAT—New Modules
4.1. AdH/PTM
4.2. Fingerprinting
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanovág, A.; Vericath, D.; Brardinoni, F. Indices of sediment connectivity: Opportunities, challenges and limitations. Earth-Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Himanshu, S.K.; Mishra, S.K.; Singh, V.P. Physically based soil erosion and sediment yield models revisited. Catena 2016, 147, 595–620. [Google Scholar] [CrossRef]
- Leitner, P.; Hauer, C.; Ofenböck, T.; Pletterbauer, F.; Schmidt-Kloiber, A.; Graf, W. Fine sediment deposition affects biodiversity and density of benthic macroinvertebrates: A case study in the freshwater pearl mussel river Waldaist (Upper Austria). Limnologica 2015, 50, 54–57. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, J.; Qiu, H.; Li, J.; Cole, J.; Waldhoff, S.; Zhang, X. Pronounced Increases in Future Soil Erosion and Sediment Deposition as Influenced by Freeze–Thaw Cycles in the Upper Mississippi River Basin. Environ. Sci. Technol. 2021, 55, 9905–9915. [Google Scholar] [CrossRef] [PubMed]
- Chauchat, J.; Cheng, Z.; Nagel, T.; Bonamy, C.; Hsu, T.J. SedFoam-2.0: A 3-D two-phase flow numerical model for sediment transport. Geosci. Model. Dev. 2017, 10, 4367–4392. [Google Scholar] [CrossRef] [Green Version]
- Longoni, L.; Papini, M.; Brambilla, D.; Barazzetti, L.; Roncoroni, F.; Scaioni, M.; Ivanov, V.I. Monitoring riverbank erosion in mountain catchments using terrestrial laser scanning. Remote Sens. 2016, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Bathurst, J.C.; Carling, P.A.; Reid, I.; Walling, D.E.; Webb, B. Sediment erosion, transport and deposition. In Applied Fluvial Geomorphology for River Engineering and Management; Wiley: Hoboken, NJ, USA, 1997; pp. 95–135. [Google Scholar]
- Bizzi, S.; Lerner, D.N. The use of stream power as an indicator of channel sensitivity to erosion and deposition processes. River Res. Appl. 2015, 31, 16–27. [Google Scholar] [CrossRef]
- Skolasińska, K.; Nowak, B. What factors affect the suspended sediment concentrations in rivers? A study of the upper Warta River (Central Poland). River Res. Appl. 2018, 34, 112–123. [Google Scholar] [CrossRef]
- Wilkes, M.A.; Gittins, J.R.; Mathers, K.L.; Mason, R.; Casas-Mulet, R.; Vanzo, D.; Mckenzie, M.; Murray-Bligh, J.; England, J.; Gurnell, A.; et al. Physical and biological controls on fine sediment transport and storage in rivers. Wiley Interdiscip. Rev. Water 2019, 6, e1331. [Google Scholar] [CrossRef] [Green Version]
- Huai, W.X.; Li, S.; Katul, G.G.; Liu, M.Y.; Yang, Z.H. Flow dynamics and sediment transport in vegetated rivers: A review. J. Hydrodyn. 2021, 33, 400–420. [Google Scholar] [CrossRef]
- Cavalli, M.; Goldin, B.; Comiti, F.; Brardinoni, F.; Marchi, L. Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models. Geomorphology 2017, 291, 4–16. [Google Scholar] [CrossRef]
- Liu, Y.; Zarfl, C.; Basu, N.B.; Schwientek, M.; Cirpka, O.A. Contributions of catchment and in-stream processes to suspended sediment transport in a dominantly groundwater-fed catchment. Hydrol. Earth Syst. Sci. 2018, 22, 3903–3921. [Google Scholar] [CrossRef] [Green Version]
- Choubin, B.; Darabi, H.; Rahmati, O.; Sajedi-Hosseini, F.; Kløve, B. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Sci. Total Environ. 2018, 615, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Magnuszewski, A.; Sabat, A.; Jarocińska, A.; Sławik, Ł. Application of the AISA Hyperspectral Image for Verification of Sediment Transport Results Obtained from CCHE2D Hydrodynamic Model—Zegrze Reservoir Case Study, Poland. In Free Surface Flows and Transport Processes; Springer: Cham, Switzerland, 2018; pp. 103–112. [Google Scholar] [CrossRef]
- Vercruysse, K.; Grabowski, R.C.; Rickson, R.J. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Sci. Rev. 2017, 166, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Tuset, J.; Vericat, D.; Batalla, R.J. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Sci. Total Environ. 2016, 540, 114–132. [Google Scholar] [CrossRef] [PubMed]
- Galia, T.; Škarpich, V.; Ruman, S.; Macurová, T. Check dams decrease the channel complexity of intermediate reaches in the Western Carpathians (Czech Republic). Sci. Total Environ. 2019, 662, 881–894. [Google Scholar] [CrossRef]
- Stähly, S.; Franca, M.J.; Robinson, C.T.; Schleiss, A.J. Erosion, transport and deposition of a sediment replenishment under flood conditions. Earth Surf. Proc. Landf. 2020, 45, 3354–3367. [Google Scholar] [CrossRef]
- Fu, B.; Merritt, W.S.; Croke, B.F.; Weber, T.R.; Jakeman, A.J. A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environ. Model. Softw. 2019, 114, 75–97. [Google Scholar] [CrossRef]
- Hajigholizadeh, M.; Melesse, A.M.; Fuentes, H.R. Erosion and sediment transport modelling in shallow waters: A review on approaches, models and applications. Int. J. Environ. Res. Public Health 2018, 15, 518. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Rudra, R.P.; Gharabaghi, B.; Daggupati, P.; Goel, P.K.; Shukla, R. Predicting the impact of drainage ditches upon hydrology and sediment loads using KINEROS 2 model: A case study in Ontario. Can. Biosyst. Eng. 2018, 60, 1. [Google Scholar] [CrossRef]
- da Silva, R.M.; Santos, C.A.G.; dos Santos, J.Y.G. Evaluation and modeling of runoff and sediment yield for different land covers under simulated rain in a semiarid region of Brazil. Int. J. Sediment Res. 2018, 33, 117–125. [Google Scholar] [CrossRef]
- Sabzevari, T.; Talebi, A. Effect of hillslope topography on soil erosion and sediment yield using USLE model. Acta Geophys. 2019, 67, 1587–1597. [Google Scholar] [CrossRef]
- Ogwo, V. Streamflow and sediment yield prediction using AnnAGNPS model in upper ebonyi river watershed, South-eastern Nigeria. Int. J. Agric. Eng. 2019, 20, 50–62. [Google Scholar]
- Prastica, R.M.S.; Soeryantono, H.; Marthanty, D.R. 2-D Numerical modelling of hydrodynamic and sediment transport in Agathis Lake. MATEC Web Conf. 2019, 270, 4019. [Google Scholar] [CrossRef] [Green Version]
- Maqsoom, A.; Aslam, B.; Hassan, U.; Kazmi, Z.A.; Sodangi, M.; Tufail, R.F.; Farooq, D. Geospatial assessment of soil erosion intensity and sediment yield using the revised universal soil loss equation (RUSLE) model. ISPRS Int. Geo-Inf. 2020, 9, 356. [Google Scholar] [CrossRef]
- Droppo, I.G.; D’Andrea, L.; Krishnappan, B.G.; Jaskot, C.; Trapp, B.; Basuvaraj, M.; Liss, S.N. Fine-sediment dynamics: Towards an improved understanding of sediment erosion and transport. J. Soil Sediment 2015, 15, 467–479. [Google Scholar] [CrossRef]
- Palazón, L.; Latorre, B.; Gaspar, L.; Blake, W.H.; Smith, H.G.; Navas, A. Combining catchment modelling and sediment fingerprinting to assess sediment dynamics in a Spanish Pyrenean river system. Sci. Total Environ. 2016, 569, 1136–1148. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Fan, D.; Bi, N.; Sun, X.; Tian, Y. Impact of water-sediment regulation on the transport of heavy metals from the Yellow River to the sea in 2015. Sci. Total Environ. 2019, 658, 268–279. [Google Scholar] [CrossRef]
- Rügner, H.; Schwientek, M.; Milačič, R.; Zuliani, T.; Vidmar, J.; Paunović, M.; Nikolaos, E.K.; Skoulikidisd, T.; Diamantinie, E.; Majonee, B.; et al. Particle bound pollutants in rivers: Results from suspended sediment sampling in Globaqua River Basins. Sci. Total Environ. 2019, 647, 645–652. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, J.; Zeng, G.; Tang, W.; Lu, Y.; Luo, Y.; Xing, W.; Tang, N.; Ye, S.; Li, X.; et al. How climate change and eutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: A review. Sci. Total Environ. 2020, 705, 135979. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, M.; Trihadiningrum, Y.; Lestari, P. Microplastic pollution in the sediment of Jagir Estuary, Surabaya City, Indonesia. Mar. Pollut. Bull. 2020, 150, 110790. [Google Scholar] [CrossRef]
- He, B.; Goonetilleke, A.; Ayoko, G.A.; Rintoul, L. Abundance, distribution patterns, and identification of microplastics in Brisbane River sediments, Australia. Sci. Total Environ. 2020, 700, 134467. [Google Scholar] [CrossRef] [PubMed]
- Spence, M.A.; Blanchard, J.L.; Rossberg, A.G.; Heath, M.R.; Heymans, J.J.; Mackinson, S.; Serpetti, N.; Speirs, D.C.; Thorpe, R.B.; Blackwell, P.G. A general framework for combining ecosystem models. Fish Fish. 2018, 19, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Chinnasamy, S.; Daren, H.; van Griensven, A.; Van Liew, M.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Brighenti, T.M.; Bonumá, N.B.; Grison, F.; de Almeida Mota, A.; Kobiyama, M.; Chaffe, P.L.B. Two calibration methods for modeling streamflow and suspended sediment with the swat model. Ecol. Eng. 2019, 127, 103–113. [Google Scholar] [CrossRef]
- Gomiz-Pascual, J.J.; Bolado-Penagos, M.; Gonzalez, C.J.; Vazquez, A.; Buonocore, C.; Romero-Cozar, J.; Perez-Cayeirob, M.L.; Izquierdoa, A.; Alvareza, O.; Mañanesa, R.; et al. The fate of Guadalquivir River discharges in the coastal strip of the Gulf of Cádiz. A study based on the linking of watershed catchment and hydrodynamic models. Sci. Total Environ. 2021, 795, 148740. [Google Scholar] [CrossRef]
- Shin, S.; Her, Y.; Song, J.H.; Kang, M.S. Integrated sediment transport process modeling by coupling soil and water assessment tool and environmental fluid dynamics code. Environ. Model. Softw. 2019, 116, 26–39. [Google Scholar] [CrossRef]
- Betrie, G.D.; Van Griensven, A.; Mohamed, Y.A.; Popescu, I.; Mynett, A.E.; Hummel, S. Linking SWAT and SOBEK using open modeling interface (OPENMI) for sediment transport simulation in the Blue Nile River basin. Trans. ASABE 2011, 54, 1749–1757. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, Y.; Chen, Y.; Xu, C.Y.; Gao, Y.; Du, J. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J. Hydrol. 2013, 485, 113–125. [Google Scholar] [CrossRef]
- Sarkar, S.; Yonce, H.N.; Keeley, A.; Canfield, T.J.; Butcher, J.B.; Paul, M.J. Integration of SWAT and HSPF for Simulation of Sediment Sources in Legacy Sediment-Impacted Agricultural Watersheds. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, S.N.; Weepener, H.L.; Le Roux, J.J.; Sumner, P.D. Swat and OBIA based sediment yield analysis in the Tsitsa catchment of the Eastern Cape province, South Africa. In Proceedings of the Centenary Conference of the Society of South African Geographers, Stellenbosch, South Africa, 25–28 September 2016; p. 315. [Google Scholar]
- Malhotra, K.; Lamba, J.; Srivastava, P.; Shepherd, S. Fingerprinting suspended sediment sources in an urbanized watershed. Water 2018, 10, 1573. [Google Scholar] [CrossRef] [Green Version]
- Vojtko, R.; Králiková, S.; Jeřábek, P.; Schuster, R.; Danišík, M.; Fügenschuh, B.; Minar, J.; Madarás, J. Geochronological evidence for the Alpine tectono-thermal evolution of the Veporic Unit (Western Carpathians, Slovakia). Tectonophysics 2016, 666, 48–65. [Google Scholar] [CrossRef]
- Kijowska-Strugała, M.; Bucała-Hrabia, A.; Demczuk, P. Long-term impact of land use changes on soil erosion in an agricultural catchment (in the Western Polish Carpathians). Land Degrad. Dev. 2018, 29, 1871–1884. [Google Scholar] [CrossRef]
- Kachmar, O.; Vavrynovych, O.; Dubytska, A.; Ivaniuk, V. Formation of erosion resistance of gray forest soils in the conditions of Carpathian region. Agric. Sci. Pract. 2018, 5, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Gil, E.; Kijowska-Strugała, M.; Demczuk, P. Soil erosion dynamics on a cultivated slope in the Western Polish Carpathians based on over 30 years of plot studies. Catena 2021, 207, 105682. [Google Scholar] [CrossRef]
- Wyżga, B. Twentieth-Century Incision of the Polish Carpathian Rivers during the 20th Century; Institute of Nature Conservation: Kraków, Poland, 2008; pp. 7–39. (In Polish) [Google Scholar]
- Wyżga, B.; Zawiejska, J.; Hajdukiewicz, H. Multi-thread rivers in the Polish Carpathians: Occurrence, decline and possibilities of restoration. Quat. Int. 2016, 415, 344–356. [Google Scholar] [CrossRef]
- Radecki-Pawlik, A.; Kuboń, P.; Radecki-Pawlik, B.; Plesiński, K. Bed-load transport in two different-sized mountain catchments: Mlynne and Lososina streams, Polish Carpathians. Water 2019, 11, 272. [Google Scholar] [CrossRef] [Green Version]
- Korpak, J.; Lenar-Matyas, A.; Radecki-Pawlik, A.; Plesiński, K. Erosion irregularities resulting from series of grade control structures: The Mszanka River, Western Carpathians. Sci. Total Environ. 2021, 799, 149469. [Google Scholar] [CrossRef]
- Bucała-Hrabia, A. Land use changes and their catchment-scale environmental impact in the Polish Western Carpathians during transition from centrally planned to free-market economics. Geogr. Pol. 2018, 91, 171–196. [Google Scholar] [CrossRef]
- Rusnák, M.; Kaňuk, J.; Kidová, A.; Šašak, J.; Lehotský, M.; Pöppl, R.; Šupinský, J. Channel and cut-bluff failure connectivity in a river system: Case study of the braided-wandering Belá River, Western Carpathians, Slovakia. Sci. Total Environ. 2020, 733, 139409. [Google Scholar] [CrossRef] [PubMed]
- Kijowska-Strugała, M. Sediment variability in a small catchment of the Polish Western Carpathians during transition from centrally planned to free-market economics. Geomorphology 2019, 325, 119–129. [Google Scholar] [CrossRef]
- Halecki, W.; Kruk, E.; Ryczek, M. Loss of topsoil and soil erosion by water in agricultural areas: A multi-criteria approach for various land use scenarios in the Western Carpathians using a SWAT model. Land Use Policy 2018, 73, 363–372. [Google Scholar] [CrossRef]
- Halecki, W.; Kowalik, T.; Bogdał, A. Multiannual Assessment of the Risk of Surface Water Erosion and Metal Accumulation Indices in the Flysch Stream Using the MARS Model in the Polish Outer Western Carpathians. Sustainability 2019, 11, 7189. [Google Scholar] [CrossRef] [Green Version]
- Galia, T.; Hradecký, J. Critical conditions for beginning of coarse sediment transport in torrents of Moravskoslezské Beskydy Mts.(Western Carpathians). Carpath. J. Earth Environ. 2012, 7, 5–14. [Google Scholar]
- Galia, T.; Hradecký, J.; Škarpich, V. Sediment transport in headwater streams of the Carpathian Flysch belt: Its nature and recent effects of human interventions. In Sediment Matters; Springer: Cham, Switzerland, 2015; pp. 13–26. [Google Scholar] [CrossRef]
- Kijowska-Strugała, M. Spatial variations of suspended sediment grain size in small mountain catchment during summer floods. Stud. Geomorphol. Carpatho-Balc. 2016, 50, 53–63. [Google Scholar]
- Liang, J.; Yang, Q.; Sun, T.; Martin, J.D.; Sun, H.; Li, L. MIKE 11 model-based water quality model as a tool for the evaluation of water quality management plans. J. Water Supply Res. Technol. 2015, 64, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Ostojski, M.S. Modeling Processes of Biogenic Compounds Discharge to the Baltic Sea: On the Example of Total Nitrogen and Phosphorus; PWN: Warszawa, Poland, 2012; pp. 5–111. (In Polish) [Google Scholar]
- Wilk, P.; Orlińska-Woźniak, P.; Gebala, J.; Ostojski, M. The flattening phenomenon in a seasonal variability analysis of the total nitrogen loads in river waters. Tech. Trans. 2017, 11, 137–159. [Google Scholar]
- Wilk, P.; Orlińska-Woźniak, P.; Gębala, J. The river absorption capacity determination as a tool to evaluate state of surface water. Hydrol. Earth Syst. Sci. 2018, 22, 1033–1050. [Google Scholar] [CrossRef] [Green Version]
- Wilk, P.; Orlińska-Woźniak, P.; Gębala, J. Mathematical description of a river absorption capacity on the example of the middle Warta catchment. Environ. Prot. Eng. 2018, 44, 99–116. [Google Scholar] [CrossRef]
- Kannan, N.; Santhi, C.; White, M.J.; Mehan, S.; Arnold, J.G.; Gassman, P.W. Some challenges in hydrologic model calibration for large-scale studies: A case study of SWAT model application to Mississippi-Atchafalaya River Basin. Hydrology 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Sirabahenda, Z.; St-Hilaire, A.; Courtenay, S.C.; Van Den Heuvel, M.R. Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models. Catena 2020, 195, 104762. [Google Scholar] [CrossRef]
- Szalińska, E.; Wilk, P. Sediment quantity management in polish catchment-river-sea systems–should we care? Econ. Environ. 2018, 66, 13. [Google Scholar]
- Szalińska, E.; Orlińska-Woźniak, P.; Wilk, P. Sediment load variability in response to climate and land use changes in a Carpathian catchment (Raba River, Poland). J. Soil Sediment 2020, 20, 2641–2652. [Google Scholar] [CrossRef] [Green Version]
- Szalińska, E.; Zemełka, G.; Kryłów, M.; Orlińska-Woźniak, P.; Jakusik, E.; Wilk, P. Climate change impacts on contaminant loads delivered with sediment yields from different land use types in a Carpathian basin. Sci. Total Environ. 2021, 755, 142898. [Google Scholar] [CrossRef]
- Orlińska-Woźniak, P.; Szalińska, E.; Jakusik, E.; Bojanowski, D.; Wilk, P. Biomass Production Potential in a River under Climate Change Scenarios. Environ. Sci. Technol. 2021, 55, 11113–11124. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y. Long-term hydrological impacts of land use/land cover change from 1984 to 2010 in the Little River Watershed, Tennessee. Int. Soil Water Conserv. Res. 2014, 2, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surf. Proc. Landf. 2015, 40, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Li, G.L.; Zheng, T.H.; Fu, Y.; Li, B.Q.; Zhang, T. Soil detachment and transport under the combined action of rainfall and runoff energy on shallow overland flow. J. Mt. Sci. 2017, 14, 1373–1383. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil and Water Assessment Tool: Theoretical Documentation, Version 2000; TWRI Report TR-191; Texas Water Resources Institute: College Station, TX, USA, 2002. [Google Scholar] [CrossRef]
- Can, T.; Xiaoling, C.; Jianzhong, L.; Gassman, P.W.; Sabine, S.; José-Miguel, S.P. Assessing impacts of different land use scenarios on water budget of Fuhe River, China using SWAT model. Int. J. Agric. Biol. Eng. 2015, 8, 95–109. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Tejaswini, V.; Sathian, K.K. Calibration and validation of swat model for Kunthipuzha basin using SUFI-2 algorithm. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2162–2172. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.H.; Khaleghi, M.R. Application of SWAT model and SWAT-CUP software in simulation and analysis of sediment uncertainty in arid and semi-arid watersheds (case study: The Zoshk–Abardeh watershed). Model. Earth Syst. Environ. 2020, 6, 2003–2013. [Google Scholar] [CrossRef]
- Yesuf, H.M.; Assen, M.; Alamirew, T.; Melesse, A.M. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena 2015, 127, 191–205. [Google Scholar] [CrossRef]
- Hussain, F.; Nabi, G.; Wu, R.S.; Hussain, B.; Abbas, T. Parameter evaluation for soil erosion estimation on small watersheds using SWAT model. Int. J. Agric. Biol. Eng. 2019, 12, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Meng, X.; Wang, H.; Yang, M. Simulated runoff and sediment yield responses to land-use change using the SWAT model in northeast China. Water 2019, 11, 915. [Google Scholar] [CrossRef] [Green Version]
- Duru, U.; Arabi, M.; Wohl, E.E. Modeling stream flow and sediment yield using the SWAT model: A case study of Ankara River basin, Turkey. Phys. Geogr. 2018, 39, 264–289. [Google Scholar] [CrossRef]
- Shi, W.; Huang, M. Predictions of soil and nutrient losses using a modified SWAT model in a large hilly-gully watershed of the Chinese Loess Plateau. Int. Soil Water Conserv. Res. 2021, 9, 291–304. [Google Scholar] [CrossRef]
- de Oliveira Serrão, E.A.; Silva, M.T.; Ferreira, T.R.; de Ataide, L.C.P.; dos Santos, C.A.; de Lima, A.M.M.; da Silvaa, V.P.R.; de Sousaa, F.A.S.; Cardoso, D.J.; Gomes, D.J.C. Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. Int. J. Sediment Res. 2022, 37, 54–69. [Google Scholar] [CrossRef]
- Khoi, D.N.; Suetsugi, T. The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam. Hydrol. Process. 2014, 28, 640–652. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Wan, L.; Cao, J.; Zhang, Q.; Yang, C. The effects of landscape pattern evolution on runoff and sediment based on SWAT model. Environ. Earth Sci. 2021, 80, 2. [Google Scholar] [CrossRef]
- Qi, J.; Lee, S.; Zhang, X.; Yang, Q.; McCarty, G.W.; Moglen, G.E. Effects of surface runoff and infiltration partition methods on hydrological modeling: A comparison of four schemes in two watersheds in the Northeastern US. J. Hydrol. 2020, 581, 124415. [Google Scholar] [CrossRef]
- Sime, C.H.; Demissie, T.A.; Tufa, F.G. Surface runoff modeling in Ketar watershed, Ethiopia. J. Sediment Environ. 2020, 5, 51–162. [Google Scholar] [CrossRef]
- Khatun, S.; Sahana, M.; Jain, S.K.; Jain, N. Simulation of surface runoff using semi distributed hydrological model for a part of Satluj Basin: Parameterization and global sensitivity analysis using SWAT CUP. Model. Earth Syst. Environ. 2018, 4, 1111–1124. [Google Scholar] [CrossRef]
- Viji, R.; Prasanna, P.R.; Ilangovan, R. Modified SCS-CN and Green-Ampt methods in surface runoff modelling for the Kundahpallam watershed, Nilgiris, Western Ghats, India. Aquat. Procedia 2015, 4, 677–684. [Google Scholar] [CrossRef]
- Mao, L.; Li, Y.; Hao, W.; Zhou, X.; Xu, C.; Lei, T. A new method to estimate soil water infiltration based on a modified Green–Ampt model. Soil Tillage Res. 2016, 161, 31–37. [Google Scholar] [CrossRef]
- Ghoraba, S. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alex. Eng. J. 2015, 54, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Me, W.; Abell, J.M.; Hamilton, D.P. Effects of hydrologic conditions on SWAT model performance and parameter sensitivity for a small, mixed land use catchment in New Zealand. Hydrol. Earth Syst. Sci. 2015, 19, 4127–4147. [Google Scholar] [CrossRef] [Green Version]
- Bauwe, A.; Kahle, P.; Lennartz, B. Hydrologic evaluation of the curve number and Green and Ampt infiltration methods by applying Hooghoudt and Kirkham tile drain equations using SWAT. J. Hydrol. 2016, 537, 311–321. [Google Scholar] [CrossRef]
- Pang, S.; Wang, X.; Melching, C.S.; Feger, K.H. Development and testing of a modified SWAT model based on slope condition and precipitation intensity. J. Hydrol. 2020, 588, 125098. [Google Scholar] [CrossRef]
- Kannan, N.; White, S.M.; Worrall, F.; Whelan, M.J. Hydrological modelling of a small catchment using SWAT-2000–Ensuring correct flow partitioning for contaminant modelling. J. Hydrol. 2007, 334, 64–72. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Kim, N.W.; Lee, J.W.; Lee, J.; Lee, J.E. SWAT application to estimate design runoff curve number for South Korean conditions. Hydrol. Process. 2010, 24, 2156–2170. [Google Scholar] [CrossRef]
- Burszta-Adamiak, E.; Licznar, P.; Zaleski, J. Criteria for identifying maximum rainfall determined by the peaks-over-threshold (POT) method under the Polish Atlas of Rainfall Intensities (PANDa) project. Meteorol. Hydrol. Water Manag. 2019, 7, 3–13. [Google Scholar] [CrossRef]
- Oktawiec, M.; Wdowikowski, M.; Kaźmierczak, B.; Zaleski, J.; Licznar, P. The separation of maximum amounts of precipitation for the Polish Atlas of Rains Intensities (PANDa). E3S Web Conf. 2019, 100, 59. [Google Scholar] [CrossRef]
- Kang, W.; Lee, K.; Jang, E.K. Evaluation and Validation of Estimated Sediment Yield and Transport Model Developed with Model Tree Technique. Appl. Sci. 2022, 12, 1119. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Vigiak, O.; Malagó, A.; Bouraoui, F.; Vanmaercke, M.; Poesen, J. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Sci. Total Environ. 2015, 538, 855–875. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R.; Gholami, L.; Khaledi Darvishan, A.; Saeidi, P. A review of the application of the MUSLE model worldwide. Hydrol. Sci. J. 2014, 59, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Hallouz, F.; Meddi, M.; Mahé, G.; Alirahmani, S.; Keddar, A. Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria). Water Sci. 2018, 32, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Gwapedza, D.; Nyamela, N.; Hughes, D.A.; Slaughter, A.R.; Mantel, S.K.; van der Waal, B. Prediction of sediment yield of the Inxu River catchment (South Africa) using the MUSLE. Int. Soil Water Conserv. Res. 2021, 9, 37–48. [Google Scholar] [CrossRef]
- Ezzaouini, M.A.; Mahé, G.; Kacimi, I.; Zerouali, A. Comparison of the MUSLE Model and Two Years of Solid Transport Measurement, in the Bouregreg Basin, and Impact on the Sedimentation in the Sidi Mohamed Ben Abdellah Reservoir, Morocco. Water 2020, 12, 1882. [Google Scholar] [CrossRef]
- Han, Y.; Zheng, F.L.; Xu, X.M. Effects of rainfall regime and its character indices on soil loss at loessial hillslope with ephemeral gully. J. Mt. Sci. 2017, 14, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Shrestha, N.K.; Wang, J. Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem. Sci. Total Environ. 2019, 650, 1872–1881. [Google Scholar] [CrossRef]
- Lin, B.; Chen, X.; Yao, H. Threshold of sub-watersheds for SWAT to simulate hillslope sediment generation and its spatial variations. Ecol. Indic. 2020, 111, 106040. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, D.; Chen, X.; Yao, H. Threshold of watershed partition in SWAT based on separating hillslope and channel sediment simulations. Ecol. Indic. 2021, 121, 107111. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Giannakis, G.V.; Efstathiou, D.; Nikolaidis, N.P.; Sibetheros, I.A.; Karatzas, G.P.; Zacharias, I. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed. Sci. Total Environ. 2015, 538, 288–297. [Google Scholar] [CrossRef]
- Lammers, R.W.; Bledsoe, B.P. Parsimonious sediment transport equations based on Bagnold’s stream power approach. Earth Surf. Proc. Landf. 2018, 43, 242–258. [Google Scholar] [CrossRef]
- Yen, H.; Lu, S.; Feng, Q.; Wang, R.; Gao, J.; Brady, D.M.; Sharifi, A.; Ahn, J.; Chen, S.; Jeong, J.; et al. Assessment of optional sediment transport functions via the complex watershed simulation model SWAT. Water 2017, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.T.; Sayre, W.W. Stochastic model for sand dispersion. J. Hydraulics Div. ASCE 1971, 97, 265–288. [Google Scholar] [CrossRef]
- Kodoatie, R.J. Sediment Transport Relations in Alluvial Channels. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1999. Available online: https://www.proquest.com/openview/3f58189b26252cb8ba89f017d63a46dc/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 1 January 2021).
- Molinas, A.; Wu, B. Transport of sediment in large sand-bed rivers. J. Hydraul. Res. 2001, 39, 135–146. [Google Scholar] [CrossRef]
- Her, Y.; Jeong, J.; Bieger, K.; Rathjens, H.; Arnold, J.; Srinivasan, R. Implications of conceptual channel representation on SWAT streamflow and sediment modeling. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 725–747. [Google Scholar] [CrossRef]
- Rathjens, H.; Oppelt, N. SWATgrid: An interface for setting up SWAT in a grid-based discretization scheme. Comput. Geosci. 2012, 45, 161–167. [Google Scholar] [CrossRef]
- USGS. Water Resources Applications Software; USGS: Reston, VA, USA, 2016. Available online: https://water.usgs.gov/software/loadest/ (accessed on 1 January 2021).
- IMGW. Public Data of the IMWM-PIB; IMGW: Warszawa, Poland, 2020; Available online: https://danepubliczne.imgw.pl/#dane-synoptyczne (accessed on 1 January 2021).
- FORECOM Project—Forest Cover Changes in Mountainous Regions—Drivers, Trajectories and Implications. Available online: http://www.gis.geo.uj.edu.pl/FORECOM/index.html (accessed on 8 February 2022).
- Operacz, A. The term “effective hydropower potential” based on sustainable development–an initial case study of the Raba river in Poland. Renew. Renew. Sustain. Energy Rev. 2017, 75, 1453–1463. [Google Scholar] [CrossRef]
- Mikuś, P.; Wyżga, B.; Walusiak, E.; Radecki-Pawlik, A.; Liro, M.; Hajdukiewicz, H.; Zawiejska, J. Island development in a mountain river subjected to passive restoration: The Raba River, Polish Carpathians. Sci. Total Environ. 2019, 660, 406–420. [Google Scholar] [CrossRef]
- Gorczyca, E.; Krzemień, K.; Sobucki, M.; Jarzyna, K. Can beaver impact promote river renaturalization? The example of the Raba River, southern Poland. Sci. Total Environ. 2018, 615, 1048–1060. [Google Scholar] [CrossRef]
- Kędra, M. Regional response to global warming: Water temperature trends in semi-natural mountain river systems. Water 2020, 12, 283. [Google Scholar] [CrossRef] [Green Version]
- Hajdukiewicz, H.; Wyżga, B. Twentieth-century development of floodplain forests in Polish Carpathian valleys: The by-product of transformation of river channels? Sci. Total Environ. 2022, 802, 149853. [Google Scholar] [CrossRef]
- Abbaspour, K.C. Swat-Cup 2012. SWAT Calibration and Uncertainty Program—A User Manual; EAWAG: Dübendorf, Switzerland, 2013. [Google Scholar]
- Khalid, K.; Ali, M.F.; Abd Rahman, N.F.; Mispan, M.R.; Haron, S.H.; Othman, Z.; Bachok, M.F. Sensitivity analysis in watershed model using SUFI-2 algorithm. Procedia Eng. 2016, 162, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Piepho, H.P. A coefficient of determination (R2) for generalized linear mixed models. Biometr. J. 2019, 61, 860–872. [Google Scholar] [CrossRef] [PubMed]
- Knoben, W.J.; Freer, J.E.; Woods, R.A. Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Orlińska-Woźniak, P.; Szalińska, E.; Wilk, P. A Database for a Sediment Yield Analysis in a Raba River Basin (Carpathian Mts). Mendeley Data 2020. Available online: https://data.mendeley.com/datasets/rft94c75zb/1 (accessed on 1 January 2021). [CrossRef]
- Vanmaercke, M.; Poesen, J.; Broeckx, J.; Nyssen, J. Sediment yield in Africa. Earth-Sci. Rev. 2014, 136, 350–368. [Google Scholar] [CrossRef] [Green Version]
- Vanmaercke, M.; Poesen, J.; Verstraeten, G.; de Vente, J.; Ocakoglu, F. Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology 2011, 130, 142–161. [Google Scholar] [CrossRef] [Green Version]
- Bachiller, A.R.; Rodríguez, J.L.G.; Sánchez, J.C.R.; Gómez, D.L. Specific sediment yield model for reservoirs with medium-sized basins in Spain: An empirical and statistical approach. Sci. Total Environ. 2019, 681, 82–101. [Google Scholar] [CrossRef]
- Drzewiecki, W.; Mularz, S. Simulation of water soil erosion effects on sediment delivery to Dobczyce Reservoir. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, B8. [Google Scholar]
- Šilhán, K.; Galia, T.; Škarpich, V. Detailed spatio-temporal sediment supply reconstruction using tree roots data. Hydrol. Process. 2016, 30, 4139–4153. [Google Scholar] [CrossRef]
- Smetanova, A.; Verstraeten, G.; Notebaert, B.; Dotterweich, M.; Létal, A. Landform transformation and long-term sediment budget for a Chernozem-dominated lowland agricultural catchment. Catena 2017, 157, 24–34. [Google Scholar] [CrossRef]
- Orlińska-Woźniak, P.; Szalińska, E.; Wilk, P. Do Land Use Changes Balance out Sediment Yields under Climate Change Predictions on the Sub-Basin Scale? The Carpathian Basin as an Example. Water 2020, 12, 1499. [Google Scholar] [CrossRef]
- Zawiejska, J.; Wyżga, B.; Radecki-Pawlik, A. Variation in surface bed material along a mountain river modified by gravel extraction and channelization, the Czarny Dunajec, Polish Carpathians. Geomorphology 2015, 231, 353–366. [Google Scholar] [CrossRef]
- Hachaj, P.S.; Szlapa, M. Impact of a thermocline on water dynamics in reservoirs–Dobczyce reservoir case. Arch. Mech. Eng. 2017, 64, 189–203. [Google Scholar] [CrossRef]
- Hachaj, P.S. Preliminary results of applying 2D hydrodynamic models of water reservoirs to identify their ecological potential. Pol. J. Environ. Stud. 2018, 27, 2049–2057. [Google Scholar] [CrossRef]
- Wilk, P.; Szlapa, M.; Hachaj, P.S.; Orlińska-Woźniak, P.; Jakusik, E.; Szalińska, E. From the source to the reservoir and beyond-tracking sediment particles with modeling tools under climate change predictions (Carpathian Mts.). Earth Space Sci. 2021, 24–34. [Google Scholar] [CrossRef]
- Hachaj, P.; Szlapa, M.; Orlińska-Woźniak, P.; Jakusik, E.; Wilk, P.; Szalińska, E. Sediment particle distribution in a dammed reservoir under climate and land use scenarios (Carpathian Mts.). Mendeley Data 2021, V1. [Google Scholar] [CrossRef]
- Buyang, S.; Yi, Q.; Cui, H.; Wan, K.; Zhang, S. Distribution and adsorption of metals on different particle size fractions of sediments in a hydrodynamically disturbed canal. Sci. Total Environ. 2019, 670, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Laceby, J.P.; Evrard, O.; Smith, H.G.; Blake, W.H.; Olley, J.M.; Minella, J.P.; Owens, P.N. The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: A review. Earth-Sci. Rev. 2017, 169, 85–103. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Her, Y.; Chen, J.; Guo, T.; Shao, G. Improvement of simulating sub-daily hydrological impacts of rainwater harvesting for landscape irrigation with rain barrels/cisterns in the SWAT model. Sci. Total Environ. 2021, 798, 149336. [Google Scholar] [CrossRef]
- Franz, C.; Makeschin, F.; Weiß, H.; Lorz, C. Sediments in urban river basins: Identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil–using the fingerprint approach. Sci. Total Environ. 2014, 466, 513–523. [Google Scholar] [CrossRef]
- Zemelka, G.; Szalinska, E. Suspended matter as water contaminant. In Proceedings of the International Multidisciplinary Scientific Geo Conference: SGEM, Albena, Bulgaria, 30 June–6 July 2016; pp. 697–702. [Google Scholar]
- Sekuła, P.; Bokwa, A.; Ustrnul, Z.; Zimnoch, M.; Bochenek, B. The impact of a foehn wind on PM10 concentrations and the urban boundary layer in complex terrain: A case study from Kraków, Poland. Tellus B Chem. Phys. Meteorol. 2021, 73, 1–26. [Google Scholar] [CrossRef]
Parameter Name | Definition | t-Stat | p-Value |
---|---|---|---|
mountain area—Upper Raba | |||
SURLAG.hru | Surface runoff lag coefficient | −1.04 | 2.98 × 10−1 |
USLE_K(1).sol | USLE equation soil erodibility (K) factor | −7.02 × 10−1 | 4.83 × 10−1 |
SOL_K(1).sol | Saturated hydraulic conductivity | −4.45 × 10−1 | 6.56 × 10−1 |
PRF_BSN.bsn | Peak rate adjustment factor for sediment routing in the main channel | −3.98 × 10−1 | 6.91 × 10−1 |
CH_K2.rte | Effective hydraulic conductivity in the main channel alluvium | −3.10 × 10−1 | 7.57 × 10−1 |
ESCO.hru | Soil evaporation compensation factor | −2.45 × 10−1 | 8.07 × 10−1 |
SPEXP.bsn | Exponent parameter for calculating sediment reentrained in channel sediment routing | 4.23 × 10−2 | 9.66 × 10−1 |
CH_COV1.rte | Channel erodibility factor | 1.07 × 10−1 | 9.14 × 10−1 |
CH_COV2.rte | Channel cover factor | 1.46 × 10−1 | 8.84 × 10−1 |
ADJ_PKR.bsn | Peak rate adjustment factor for sediment routing in the subbasin | 8.07 × 10−1 | 4.20 × 10−1 |
SPCON.bsn | Linear parameter for calculating the maximum amount of sediment that can be reentrained during channel sediment routing. | 8.93 × 10−1 | 3.72 × 10−1 |
SOL_AWC(1).sol | Available water capacity of the soil layer | 1.37 | 1.72 × 10−1 |
CH_N2.rte | Manning’s “n” value for the main channel | 5.51 | 5.79 × 10−8 |
USLE_P.mgt | USLE equation support practice | 7.49 | 3.41 × 10−13 |
CN2.mgt | Initial SCS runoff curve number for moisture condition | 1.62 × 101 | 4.30 × 10−47 |
HRU_SLP.hru | Average slope steepness | 2.08 × 101 | 8.70 × 10−69 |
submountain area—Lower Raba | |||
GW_DELAY.gw | Groundwater delay time | −1.47 | 1.43 × 10−1 |
USLE_P.mgt | USLE equation support practice | −1.17 | 2.43 × 10−1 |
SURLAG.hru | Surface runoff lag coefficient | −1.02 | 3.10 × 10−1 |
USLE_K(1).sol | USLE equation soil erodibility (K) factor | −3.20 × 10−1 | 7.49 × 10−1 |
SPEXP.bsn | Exponent parameter for calculating sediment reentrained in channel sediment routing | 4.23 × 10−2 | 9.66 × 10−1 |
CH_COV2.rte | Channel cover factor | 7.53 × 10−2 | 9.40 × 10−1 |
RES_SED.res | Initial sediment concentration in the reservoir | 6.18 × 10−1 | 5.37 × 10−1 |
CN2.mgt | Initial SCS runoff curve number for moisture condition | 8.70 × 10−1 | 3.85 × 10−1 |
SPCON.bsn | Linear parameter for calculating the maximum amount of sediment that can be reentrained during channel sediment routing | 8.93 × 10−1 | 3.72 × 10−1 |
ADJ_PKR.bsn | Peak rate adjustment factor for sediment routing in the subbasin | 1.08 | 2.81 × 10−1 |
CH_COV1.rte | Channel erodibility factor | 1.17 | 2.41 × 10−1 |
RES_RR.res | average daily principal spillway release | 1.17 | 2.41 × 10−1 |
PRF_BSN.bsn | Peak rate adjustment factor for sediment routing in the main channel | 1.46 | 1.45 × 10−1 |
ALPHA_BF.gw | Baseflow alpha factor | 1.62 | 1.07 × 10−1 |
RES_NSED.res | Normal sediment concentration in the reservoir | 2.42 | 1.59 × 10−2 |
HRU_SLP.hru | Average slope steepness | 5.84 | 9.90 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilk, P. Expanding the Sediment Transport Tracking Possibilities in a River Basin through the Development of a Digital Platform—DNS/SWAT. Appl. Sci. 2022, 12, 3848. https://doi.org/10.3390/app12083848
Wilk P. Expanding the Sediment Transport Tracking Possibilities in a River Basin through the Development of a Digital Platform—DNS/SWAT. Applied Sciences. 2022; 12(8):3848. https://doi.org/10.3390/app12083848
Chicago/Turabian StyleWilk, Paweł. 2022. "Expanding the Sediment Transport Tracking Possibilities in a River Basin through the Development of a Digital Platform—DNS/SWAT" Applied Sciences 12, no. 8: 3848. https://doi.org/10.3390/app12083848
APA StyleWilk, P. (2022). Expanding the Sediment Transport Tracking Possibilities in a River Basin through the Development of a Digital Platform—DNS/SWAT. Applied Sciences, 12(8), 3848. https://doi.org/10.3390/app12083848