# Viability Study of the Application of Bi-Block Concrete Sleepers as a Solution for Technical Landfills

^{*}

## Abstract

**:**

## Featured Application

**This work can be used to support decisions made by transportation infrastructure managers for circular development, using waste as raw materials.**

## Abstract

## 1. Introduction

## 2. Materials and Methods

#### 2.1. BB Sleeper Characterization

#### 2.2. Numerical Modelling

#### 2.2.1. Horizontal Arrangement (HA)

#### 2.2.2. Vertical Arrangement (VA)

#### 2.2.3. Pyramidal Arrangement (PA)

#### 2.2.4. Single Horizontal Arrangement 90° (SHA90°)

#### 2.2.5. Double Horizontal Arrangement 90° (DHA90°)

## 3. Analysis of Numerical Simulation Results

#### 3.1. Horizontal Arrangement (HA)

#### 3.2. Vertical Arrangement (VA)

#### 3.3. Pyramidal Arrangement (PA)

#### 3.4. Single and Double Horizontal Arrangement 90°

## 4. Life Cycle Assessment (LCA)

#### 4.1. Declared Unit and System Boundaries

#### 4.2. Inventory Analysis

#### 4.3. Impact Evaluation

#### 4.4. Normalization

#### 4.5. Aggregation and Global Assessment

_{A}).

_{A}) is the average weighting for each standardized indicator P

_{i}while w

_{i}is the contribution of indicator i to the overall environmental performance. The sum of all weights must equal 1.0 [18]. In addition, this study considers the weights defined in a study developed by the Science Advisory Board (SAB) of the US Environmental Protection Agency [19] which correspond as follows: (i) GWP 38%, (ii) ODP 12%; (iii) AP 12%; (iv) EP 12%; (v) POCP 14%; (vi) ADP_FF 12%.

## 5. Analysis of Life Cycle Assessment Results

_{A}) of each reinforcement arrangement under study. In the sustainability profiles, the drawn area represents the performance of each adopted arrangement. At the level of each impact category, the best shape arrangement when implementing BB sleepers as reinforcement elements is the one with a value closest to one. It was found that the DHA90° 50/40 arrangement presented the best overall environmental performance (ND

_{A}= 1.00), and in traditional solutions, such as in this study, the implementation of transition wedges (BM) presented the worst performance (ND

_{A}= 0.00).

## 6. Final Remarks and Conclusions

_{2}results from the high amounts of extraction and transport of raw material that occur during the construction of the transition zone.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Ana da Silva, F. Reaproveitamento de Materiais em Grandes Obras de Reabilitação. Master’s Thesis, Universidade de Aveiro, Aveiro, Portugal, 2010. [Google Scholar]
- Fraile-Garcia, E.; Ferreiro-Cabello, J.; López-Ochoa, L.M.; López-González, L.M. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production. Materials
**2017**, 10, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Costa, I.D.A.C. Resíduos de Construção e Demolição: Fatores Determinantes para a sua Gestão Integrada e Sustentável. Doctoral Dissertation, Universidade Nova de Lisboa, Lisboa, Portugal, 2014. [Google Scholar]
- APA. Resíduos de Construção e Demolição–Resultados 2018 e Evolução 2016–2018. 2019. Available online: https://apambiente.pt/sites/default/files/_Residuos/FluxosEspecificosResiduos/RCD/ResiduosConstrucaoDemolicao.pdf (accessed on 12 January 2021).
- Agência Portuguesa do Ambiente APA. Incorporação de Resíduos de Betão–Isenção de Licenciamento. 2021. Available online: https://apambiente.pt/sites/default/files/_Residuos/FluxosEspecificosResiduos/RCD/regras_gerais_RCD_betao_170101_v1.pdf (accessed on 8 June 2021).
- Silva, H.M.G.D. Transições Aterro-Pontes em Vias Férreas de Alta Velocidade. Master’s Thesis, Universidade do Porto, Porto, Portugal, 2010. [Google Scholar]
- Fortunato, E.; Paixão, A.; Calçada, R.; Clemente, J. Comportamento estrutural de zonas de transição em vias-férreas—Análise de um caso de estudo. In 8° Congresso Rodoviário Português; LNEC: Lisboa, Portugal, 2016. [Google Scholar]
- Seara, I.; Gomes, C.A. Solução Geoestrutural Transition Zones of Railways: The Importance of a Geostrutural Solution. 2008. Available online: http://hdl.handle.net/1822/10904 (accessed on 23 March 2021).
- Paixao, A.; Ribeiro, C.A.; Pinto, N.; Fortunato, E.; Calçada, R. On the use of under sleeper pads in transition zones at railway underpasses: Experimental field testing. Struct. Infrastruct. Eng.
**2015**, 11, 112–128. [Google Scholar] [CrossRef] - Seara, I.; Correia, A.G. Avaliação Do Desempenho De Soluções Para Zonas De Transição Aterro-Ponte De Vias-Férreas Através De Simulação Numérica 3D Performance Assessment Solutions for Transition Zones Embankment-Bridge Railways Trough Numerical Simulation 3D; Edições Almedina: Coimbra, Portugal, 2010; pp. 2137–2146. [Google Scholar]
- LER. Lista Europeia de Resíduos. J. Off. União Eur. 2020. Available online: https://apambiente.pt/sites/default/files/2021-06/Guia%20de%20Classifica%C3%A7%C3%A3o_vers%C3%A3o%202.0_20200107.pdf (accessed on 17 March 2021).
- LNEC-474; Guia Para a Utilização de Materiais Reciclados Provenientes de Resíduos de Construção e Demolição em Aterro e Camada de Leito de Infra-Estruturas de Transportes. APA: Lisbon, Portugal, 2009. Available online: http://www.apambiente.pt/_zdata/Politicas/Residuos/FluxosEspecificosResiduos/RCD/E4742009.pdf (accessed on 18 December 2020).
- E 484–2016; Guia Para a Utilização de Agregados Provenientes de Resíduos de Construção e Demolição em Caminhos Rurais e Florestais. LNEC E–Laboratório Nacional de Engenharia Civil: Lisbon, Portugal, 2016.
- E 473–2009; Guia para a utilização de agregados reciclados em camadas não ligadas de pavimentos. LNEC–Laboratório Nacional de Engenharia Civil: Lisbon, Portugal, 2009; p. p. 4.
- E 485–2016; Guia Para a Utilização De Materiais Provenientes De Resíduos De Construção E Demolição Em Preenchimento De Valas. LNEC–Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 2016; Volume 733, p. p. 5.
- Fernandes, A.; Amorim, J. Concreto sustentável aplicado na construção civil. Cad. Grad. Ciências Exatas Tecnológicas
**2014**, 2, 79–104. Available online: https://periodicos.set.edu.br/index.php/cadernoexatas/article/view/1093/728 (accessed on 10 April 2021). - Mateus, L.; Bragança, R. Tecnologias Construtivas Para a Sustentabilidade da Construção; Edições Ecopy: Porto, Portugal, 2006. [Google Scholar]
- Mateus, R.; Neiva, S.; Bragança, L.; Mendonca, P.; Macieira, M. Sustainability assessment of an innovative lightweight building technology for partition walls & Comparison with conventional technologies. Build. Environ.
**2013**, 67, 147–159. [Google Scholar] [CrossRef] - ISO 14042; Environmental Management–Life Cycle Assess–Life Cycle Impact Assess. ISO: Geneva, Switzerland, 2000.
- Hischier, R. Implementation of Life Cycle Impact Assessment Methods Data v2.2. Ecoinvent
**2010**, 176. Available online: https://www.ecoinvent.org/files/201007_hischier_weidema_implementation_of_lcia_methods.pdf (accessed on 1 March 2021). - Corté, J.F.; Havard, H.M.; Laboratoire Central des Ponts et Chaussées (France); Service D’études Techniques des Routes et Autoroutes. Practical Manual for the use of Soils and Rocky Materials in Embankment Construction; LCPC: Paris, France, 2003. [Google Scholar]
- CEN EN 15804:2012; Sustainability of Construction Works–Environmental Product Declarations—Core Rules for the Product Category of Construction Products. British Standards Institute: London, UK, 2012; Volume 26.
- Bocasanta, S.; Pfitscher, E.; Borgert, A. Benefícios e Custos Ambientais Gerados com Edificações Sustentáveis: Uma Ferramenta para Análise de Viabilidade Financeira Ambiental. Rev. Catarin. Da Ciência Contábil
**2016**, 15, 35–46. [Google Scholar] [CrossRef] - Teixeira, E.R.; Mateus, R.; Camões, A.; Bragança, L.; Branco, F.G. Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J. Clean. Prod.
**2016**, 112, 2221–2230. [Google Scholar] [CrossRef] [Green Version] - Rahla, K.M.; Mateus, R.; Bragança, L. Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). J. Clean. Prod.
**2019**, 220, 445–459. [Google Scholar] [CrossRef] - Díaz-Balteiro, L.; Romero, C. In search of a natural systems sustainability index. Ecol. Econ.
**2004**, 49, 401–405. [Google Scholar] [CrossRef]

**Figure 2.**Longitudinal geometric arrangement and components with dimensions defined in the XZ plane for the base model with wedges and definitions of the mobile load and application direction.

**Figure 3.**Transverse geometric arrangement and components with dimensions defined in the YZ plane viewed facing the joint.

**Figure 5.**Definition of the various parameters in the arrangements of sleepers in the horizontal direction: Sets, HD, and row determination.

**Figure 6.**Definition of the various parameters in the arrangements of sleepers in the vertical direction: Sets, HD, and row determination.

**Figure 7.**Definition of the various parameters in the pyramidal arrangement: Sets, HD, and row determination.

**Figure 8.**Definition of the parameters of variation in the arrangements of sleepers in the horizontal direction turned 90°: Sets, HD, and determination of rows.

**Figure 12.**Vertical displacements when implementing the SHA90° with 19 and 15 BB sleepers per row in sets 1 and 2, respectively.

**Figure 13.**Vertical displacements when implementing the SHA90° with 25 and 20 BB sleepers per row in sets 1 and 2, respectively.

**Figure 14.**Vertical displacements when implementing the DHA90° with 38 and 30 BB sleepers per row in sets 1 and 2, respectively.

**Figure 15.**Vertical displacements when implementing the DHA90° with 50 and 40 BB sleepers per row in sets 1 and 2, respectively.

**Figure 16.**Processes considered in the environmental analysis of the different arrangements of BB sleepers and the study boundary.

**Figure 17.**Sustainability profiles and environmental performance values of each form layout and respective overall environmental performance (ND

_{A}). Legend: (

**a**) PA; (

**b**) HA; (

**c**) SHA90° 19/15; (

**d**) SHA90° 38/30; (

**e**) DHA90° 25/20; (

**f**) DHA90° 50/40.

Element | Parameter | Value | Unit |
---|---|---|---|

Sleeper (Bi-block in prestressed concrete)/Joint | Poisson ratio | 0.20 | [-] |

Young’s modulus | 30 | [GPa] | |

Density | 1700 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] | |

Reinforcing steel | Poisson ratio | 0.30 | [-] |

Young’s modulus | 200 | [GPa] | |

Density | 7.85 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] | |

UIC60 rail | Poisson ratio | 0.30 | [-] |

Young’s modulus | 210 | [GPa] | |

Density | 7800 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] | |

Ballast | Thickness | 0.40 | [m] |

Poisson ratio | 0.10 | [-] | |

Young’s modulus | 200 | [MPa] | |

Density | 1800 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] | |

Sub-Ballast | Thickness | 0.30 | [m] |

Poisson ratio | 0.20 | [-] | |

Young’s modulus | 259.70 | [MPa] | |

Density | 2200 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] | |

Track-bed | Thickness | 0.60 | [m] |

Poisson ratio | 0.20 | [-] | |

Young’s modulus | 400 | [MPa] | |

Density | 2200 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] | |

Wedge 1 | Poisson ratio | 0.20 | [-] |

Young’s modulus | 519.40 | [MPa] | |

Density | 2150 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] | |

Wedge 2 | Poisson ratio | 0.20 | [-] |

Young’s modulus | 259.70 | [MPa] | |

Density | 2080 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] | |

Landfill | Poisson ratio | 0.20 | [-] |

Young’s modulus | 60 | [MPa] | |

Density | 1850 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] | |

Foundation | Poisson ratio | 0.30 | [-] |

Young’s modulus | 246 | [MPa] | |

Density | 1850 | $[\mathrm{Kg}/{\mathrm{m}}^{3}$] |

NRM | BM | HA | PA | SHA90° 19/15 | SHA90° 25/20 | DHA90° 38/30 | DHA90° 50/40 | Units | |
---|---|---|---|---|---|---|---|---|---|

Ballast | 71.04 | 71.04 | 71.04 | 71.04 | 71.04 | 71.04 | 71.04 | 71.04 | ${\mathrm{m}}^{3}$ |

Sub-Ballast | 125.24 | 125.24 | 125.24 | 125.24 | 125.24 | 125.24 | 125.24 | 125.24 | ${\mathrm{m}}^{3}$ |

Track-bed | 238.95 | 186.98 | 234.33 | 237.75 | 237.24 | 237.58 | 233.48 | 232.11 | ${\mathrm{m}}^{3}$ |

Landfill | 2530.43 | 2992.75 | 2508.88 | 2517.27 | 2522.45 | 2521.53 | 2520.39 | 2511.62 | ${\mathrm{m}}^{3}$ |

Foundation | 6733.48 | 4472.31 | 6733.48 | 6733.48 | 6733.48 | 6732.11 | 6733.48 | 6726.64 | ${\mathrm{m}}^{3}$ |

Wedge 1 | N/A | 500.12 | N/A | N/A | N/A | N/A | N/A | N/A | ${\mathrm{m}}^{3}$ |

Wedge 2 | N/A | 1051.94 | N/A | N/A | N/A | N/A | N/A | N/A | ${\mathrm{m}}^{3}$ |

NS | N/A | N/A | 459.00 | 252.00 | 170.00 | 180.00 | 272.00 | 450.00 | unit |

NRM | BM | HA | PA | SHA90° 19/15 | SHA90° 25/20 | DHA90° 38/30 | DHA90° 50/40 | Units | |
---|---|---|---|---|---|---|---|---|---|

Ballast | 127.87 | 127.87 | 127.87 | 127.87 | 127.87 | 127.87 | 127.87 | 127.87 | tkm |

Sub-Ballast | 275.53 | 275.53 | 275.53 | 275.53 | 275.53 | 275.53 | 275.53 | 275.53 | tkm |

Track-bed | 525.69 | 411.35 | 515.53 | 523.04 | 521.93 | 522.68 | 513.65 | 510.64 | tkm |

Landfill | 4681.29 | 5536.59 | 4641.43 | 4656.94 | 4666.52 | 4664.84 | 4662.73 | 4646.49 | tkm |

Foundation | 12,456.94 | 8273.77 | 12,456.94 | 12,456.94 | 12,456.94 | 12,454.41 | 12,456.94 | 12,444.29 | tkm |

Wedge 1 | N/A | 1075.26 | N/A | N/A | N/A | N/A | N/A | N/A | tkm |

Wedge 2 | N/A | 2188.04 | N/A | N/A | N/A | N/A | N/A | N/A | tkm |

Sleepers | N/A | N/A | 87.21 | 47.88 | 32.30 | 34.20 | 51.68 | 85.50 | tkm |

Ecoinvent Processes | Ballast | Sub-Ballast | Track-Bed | Landfill | Foundation | Wedge 1 | Wedge 2 | Sleepers | Railroad |
---|---|---|---|---|---|---|---|---|---|

Crushed stone 16/32 mm, open pit mining, production mix, at plant, undried RER S | x | x | x | x | |||||

Gravel, round {CH}|gravel and sand quarry operation|Alloc Def, S | x | ||||||||

Clay and soil from quarry, EU27 | x | x | |||||||

Cement, Portland {Europe without Switzerland}|market for|Alloc Def, S | x | ||||||||

Loader operation, large, NE-NC/RNA | x | x | x | x | x | x | x | ||

Transport, combination truck, diesel powered/US | x | x | x | x | x | x | x | x | |

Railway track {row}|construction|Alloc Def, S | x |

Q/L $\left[{\mathbf{m}}^{3}\mathbf{h}\ast \mathbf{m}\right]$ | BSC $\left[{\mathbf{m}}^{3}\right]$ | Yield $\left[\mathbf{h}\ast \mathbf{m}\right]$ | BM $\left[{\mathbf{m}}^{3}\right]$ | Yield $\left[\mathbf{h}\ast \mathbf{m}\right]$ | 19/17/15 $\left[{\mathbf{m}}^{3}\right]$ | Yield $\left[\mathbf{h}\ast \mathbf{m}\right]$ | 14/7 4N $\left[{\mathbf{m}}^{3}\right]$ | Yield $\left[\mathbf{h}\ast \mathbf{m}\right]$ | 19/15 90° S $\left[{\mathbf{m}}^{3}\right]$ | Yield $\left[\mathbf{h}\ast \mathbf{m}\right]$ | 25/20 90° S $\left[{\mathbf{m}}^{3}\right]$ | Yield $\left[\mathbf{h}\ast \mathbf{m}\right]$ | 19/15 90° D $\left[{\mathbf{m}}^{3}\right]$ | Yield $\left[\mathbf{h}\ast \mathbf{m}\right]$ | 25/20 90° D $\left[{\mathbf{m}}^{3}\right]$ | Yield $\left[\mathbf{h}\ast \mathbf{m}\right]$ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Ballast | 180 | 71.04 | 0.39 | 71.04 | 0.39 | 71.04 | 0.39 | 71.04 | 0.39 | 71.04 | 0.39 | 71.04 | 0.39 | 71.04 | 0.39 | 71.04 | 0.39 |

Sub-Ballast | 180 | 125.24 | 0.70 | 125.24 | 0.70 | 125.24 | 0.70 | 125.24 | 0.70 | 125.24 | 0.70 | 125.24 | 0.70 | 125.24 | 0.70 | 125.24 | 0.70 |

Track-bed | 180 | 238.95 | 1.33 | 186.98 | 1.04 | 234.33 | 1.30 | 237.75 | 1.32 | 237.24 | 1.32 | 237.58 | 1.32 | 233.48 | 1.30 | 232.11 | 1.29 |

Landfill | 200 | 2530.43 | 12.65 | 2992.75 | 14.96 | 2508.88 | 12.54 | 2517.27 | 12.59 | 2522.45 | 12.61 | 2521.53 | 12.61 | 2520.39 | 12.60 | 2511.62 | 12.56 |

Foundation | 200 | 6733.48 | 33.67 | 4472.31 | 22.36 | 6733.48 | 33.67 | 6733.48 | 33.67 | 6733.48 | 33.67 | 6732.11 | 33.66 | 6733.48 | 33.67 | 6726.64 | 33.63 |

Wedge 1 | 180 | N/A | N/A | 500.12 | 2.78 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |

Wedge 2 | 180 | N/A | N/A | 1051.94 | 5.84 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |

Environmental Indicators | Units | LCIA Methods |
---|---|---|

Global warming (GWP 100) | $\left[{\mathrm{Kg}\mathrm{CO}}_{2}\mathrm{eq}\right]$ | CML-IA baseline V3.04/EU25+3, 2000 |

Ozone depletion (ODP) | $\left[\mathrm{Kg}\mathrm{CFC}-11\mathrm{eq}\right]$ | CML-IA baseline V3.04/EU25+3, 2000 |

Potential acidification (AP) | $\left[{\mathrm{Kg}\mathrm{SO}}_{2}\mathrm{eq}\right]$ | CML-IA baseline V3.04/EU25+3, 2000 |

Potential eutrophication (EP) | $\left[{\mathrm{Kg}\mathrm{PO}}_{4}\mathrm{eq}\right]$ | CML-IA baseline V3.04/EU25+3, 2000 |

Photochemical ozone creation (POCP) | $\left[{\mathrm{Kg}\mathrm{C}}_{2}{\mathrm{H}}_{4}\mathrm{eq}\right]$ | CML-IA baseline V3.04/EU25+3, 2000 |

Abiotic depletion potential of fossil resources (ADP_FF) | $\left[\mathrm{MJ}\mathrm{eq}\right]$ | Cumulative energy demand V1.08 |

Depletion of abiotic soil and water resources (ERA) | $\left[\mathrm{Kg}\mathrm{Sb}\mathrm{eq}\right]$ | CML-IA baseline V3.04/EU25+3, 2000 |

Impact Category | Unit | BM | PA | HA | SHA90° 19/15 | DHA90° 38/30 | SHA90° 25/20 | DHA90° 50/40 |
---|---|---|---|---|---|---|---|---|

GWP 100 | [kg CO_{2} eq] | 2.75 × 10^{5} | 2.44 × 10^{5} | 2.44 × 10^{5} | 2.44 × 10^{5} | 2.44 × 10^{5} | 2.44 × 10^{5} | 2.44 × 10^{5} |

ODP | [kg CFC-11 eq] | 1.23 × 10^{−2} | 2.21 × 10^{−3} | 2.21 × 10^{−3} | 2.21 × 10^{−3} | 2.21 × 10^{−3} | 2.21 × 10^{−3} | 2.21 × 10^{−3} |

AP | [kg SO_{2} eq] | 1.31 × 10^{3} | 1.10 × 10^{3} | 1.10 × 10^{3} | 1.10 × 10^{3} | 1.10 × 10^{3} | 1.10 × 10^{3} | 1.10 × 10^{3} |

EP | [kg PO_{4} eq] | 1.49 × 10^{2} | 1.30 × 10^{2} | 1.30 × 10^{2} | 1.30 × 10^{2} | 1.30 × 10^{2} | 1.30 × 10^{2} | 1.30 × 10^{2} |

POCP | [kg C_{2}H_{4} eq] | 8.95 × 10^{1} | 8.45 × 10^{1} | 8.45 × 10^{1} | 8.46 × 10^{1} | 8.46 × 10^{1} | 8.46 × 10^{1} | 8.46 × 10^{1} |

ADP_FF | [MJ eq] | 3.28 × 10^{6} | 3.17 × 10^{6} | 3.17 × 10^{6} | 3.17 × 10^{6} | 3.17 × 10^{6} | 3.17 × 10^{6} | 3.17 × 10^{6} |

ERA | [kg Sb eq] | 1.37 × 10^{−1} | 1.45 × 10^{−1} | 1.45 × 10^{−1} | 1.45 × 10^{−1} | 1.45 × 10^{−1} | 1.45 × 10^{−1} | 1.45 × 10^{−1} |

**Table 8.**Summarized standardized impact of sustainability indicators in the distinctive form arrangements.

Impact Category | BM | PA | HA | SHA90° 19/15 | DHA90° 38/30 | SHA90° 25/20 | DHA90° 50/40 |
---|---|---|---|---|---|---|---|

GWP 100 | 0 | 0.989 | 0.996 | 0.985 | 0.988 | 0.987 | 1.000 |

ODP | 0 | 0.999 | 1.000 | 0.999 | 1.000 | 0.999 | 1.000 |

AP | 0 | 0.993 | 0.997 | 0.990 | 0.992 | 0.991 | 1.000 |

EP | 0 | 0.989 | 0.996 | 0.986 | 0.990 | 0.987 | 1.000 |

POCP | 0 | 0.977 | 0.992 | 0.969 | 0.973 | 0.973 | 1.000 |

ADP_FF | 0 | 0.960 | 0.987 | 0.946 | 0.955 | 0.952 | 1.000 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Másmela, C.; Teixeira, E.; Tinoco, J.; Matos, J.C.e.; Mateus, R.
Viability Study of the Application of Bi-Block Concrete Sleepers as a Solution for Technical Landfills. *Appl. Sci.* **2022**, *12*, 3065.
https://doi.org/10.3390/app12063065

**AMA Style**

Másmela C, Teixeira E, Tinoco J, Matos JCe, Mateus R.
Viability Study of the Application of Bi-Block Concrete Sleepers as a Solution for Technical Landfills. *Applied Sciences*. 2022; 12(6):3065.
https://doi.org/10.3390/app12063065

**Chicago/Turabian Style**

Másmela, Camilo, Elisabete Teixeira, Joaquim Tinoco, José Campos e Matos, and Ricardo Mateus.
2022. "Viability Study of the Application of Bi-Block Concrete Sleepers as a Solution for Technical Landfills" *Applied Sciences* 12, no. 6: 3065.
https://doi.org/10.3390/app12063065