Cross-Channel Dynamic Weighting RPCA: A De-Noising Algorithm for Multi-Channel Arterial Pulse Signal
Abstract
:Featured Application
Abstract
1. Introduction
2. Data and Overall System
2.1. Dataset
2.2. Signal Processing Framework
3. Proposed De-Noising Algorithm and Evaluation Method
3.1. Cross-Channel Dynamic Weighting RPCA
Algorithm 1: Cross-Channel DWRPCA |
Input:: Multi-beat pulse signal |
: the maximum number of iterations |
Output:L: Low-rank matrix (de-noised pulse signal) |
S: Sparse matrix |
1: normalize input data matrix |
2: transform into |
3: for n = 1 to length () do |
4: Use as the input of the trained CNN model |
5: Compute the CSF of n-th channel using the model |
6: Initialize , , , ; |
7: While not convergence or do |
8: repeat |
9: decomposed singular value |
10: weighting factor |
11: ; |
12: ; |
13: ; |
14: ; |
15: ; |
16: end while |
17: end for |
3.2. Performance Evaluation Method
4. Results
4.1. Time-Domain Analysis
4.1.1. Time-Domain Analysis for Extracted Signals
4.1.2. Time-Domain Analysis for Extracted Noise
4.1.3. Non-Deviation Errors of Key Physiological Points
4.2. Frequency-Domain Analysis
4.3. Run-Time Complexities
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korpas, D.; Hálek, J.; Doležal, L. Parameters describing the pulse wave. Physiol. Res. 2009, 58, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-J.; Zhang, L.; Xu, J.-T.; Liu, B.-C.; Wang, J.-Y.; Hong, Y.-L.; Tu, L.-P.; Cui, J. Pulse Wave Cycle Features Analysis of Different Blood Pressure Grades in the Elderly. Evid.-Based Complement. Altern. Med. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Chang, Y.-H.; Cheng, S.-M.; Lin, S.J.-S.; Lin, C.-J.; Su, Y.-C. Applying Pulse Spectrum Analysis to Facilitate the Diagnosis of Coronary Artery Disease. Evid.-Based Complement. Altern. Med. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avolio, A.P.; Kuznetsova, T.; Heyndrickx, G.R.; Kerkhof, P.L.M.; Li, J.K.-J. Arterial Flow, Pulse Pressure and Pulse Wave Velocity in Men and Women at Various Ages. In Sex-Specific Analysis of Cardiovascular Function; Kerkhof, P.L.M., Miller, V.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 153–168. [Google Scholar] [CrossRef]
- Peng, B.; Luo, C.-H.; Sinha, N.; Tai, C.-C.; Xie, X.; Xie, H. Fourier Series Analysis for Novel Spatiotemporal Pulse Waves: Normal, Taut, and Slippery Pulse Images. Evid.-Based Complement. Altern. Med. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, B.; Luo, C.-H.; Chan, W.Y.; Shieh, M.-D.; Su, C.-J.; Tai, C.-C. Development and Testing of a Prototype for 3D Radial Pulse Image Measurement and Compatible with 1D Pulse Wave Analysis. IEEE Access 2019, 7, 182846–182859. [Google Scholar] [CrossRef]
- Butlin, M.; Qasem, A. Large Artery Stiffness Assessment Using SphygmoCor Technology. Pulse 2017, 4, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.-F.; Hu, C.-S.; Yeh, C.-C.; Luo, C.-H. How to standardize the pulse-taking method of traditional Chinese medicine pulse diagnosis. Comput. Biol. Med. 2013, 43, 342–349. [Google Scholar] [CrossRef]
- Kong, K.W.; Lau, W.M.; Wong, K.S.; Chan, H.Y.; Lee, F.C.; Shen, J.; Wong, V.T.; Li, W.J. A Pulse-sensing Robotic Hand for Tactile Arterial Palpation. In Proceedings of the 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Chengdu, China, 19–22 June 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Cui, J.; Tu, L.-P.; Zhang, J.-F.; Zhang, S.-L.; Zhang, Z.-F.; Xu, J.-T. Analysis of Pulse Signals Based on Array Pulse Volume. Chin. J. Integr. Med. 2019, 25, 103–107. [Google Scholar] [CrossRef]
- Tiwana, M.I.; Redmond, S.; Lovell, N.H. A review of tactile sensing technologies with applications in biomedical engineering. Sensors Actuators A: Phys. 2012, 179, 17–31. [Google Scholar] [CrossRef]
- Saugel, B.; Kouz, K.; Scheeren, T.W.; Greiwe, G.; Hoppe, P.; Romagnoli, S.; de Backer, D. Cardiac output estimation using pulse wave analysis—physiology, algorithms, and technologies: A narrative review. Br. J. Anaesth. 2021, 126, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, R.; Lu, S.; Gong, J.; Zhao, Z.; Chen, H.; Cui, L.; Wang, N.; Yu, Y. EasiCPRS:Design and Implementation of a Portable Chinese Pulse-wave Retrieval System. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, New York, NY, USA, 1–4 November 2011. [Google Scholar] [CrossRef]
- Hu, C.S.; Chung, Y.F.; Luo, C.H.; Yeh, C.C.; Si, X.C. Pulse Differences and 3D PulseMappingin TPNI Displacements. In Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics, Shanghai, China, 15–17 October 2011. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; O’Rourke, M.; Nichols, W.W. McDonald’s Blood Flow in Arteries, 6th ed.; Hodder Arnold: London, UK, 2011. [Google Scholar]
- Attinger, E.O.; Anne, A.; McDonald, D.A. Use of Fourier Series for the Analysis of Biological Systems. Biophys. J. 1966, 6, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Dick, D.E.; Kendrick, J.E.; Matson, G.L.; Rideout, V.C. Measurement of Nonlinearity in the Arterial System of the Dog by a New Method. Circ. Res. 1968, 22, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 1–37. [Google Scholar] [CrossRef]
- He, L.; Luo, C.-H.; Xie, X.; Peng, B. De-noising of 3D Pulse Images by Channel-Weighted Robust Principal Component Analysis. In Proceedings of the 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), Jinan, China, 18–20 October 2019; pp. 19–23. [Google Scholar] [CrossRef]
- Mehrizi, A.A.; Moini, M.; Afshari, E.; Kadkhodapour, J.; Sadjadian, A.; Najarian, S. Application of artificial palpation in vascular surgeries for detection of peripheral arterial stenosis. J. Med Eng. Technol. 2014, 38, 169–178. [Google Scholar] [CrossRef]
- Messas, E.; Pernot, M.; Couade, M. Arterial wall elasticity: State of the art and future prospects. Diagn. Interv. Imaging 2013, 94, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.; Wang, D. Arterial Pulse Signal Amplification by Adding a Uniform PDMS Layer to a Pyrex-Based Microfluidic Tactile Sensor. IEEE Sensors J. 2020, 20, 2164–2172. [Google Scholar] [CrossRef]
- Duarte, R.; Stainthorpe, A.; Greenhalgh, J.; Richardson, M.; Nevitt, S.; Mahon, J.; Kotas, E.; Boland, A.; Thom, H.; Marshall, T.; et al. Lead-I ECG for Detecting Atrial Fibrillation in Patients with An Irregular Pulse using Single Time Point Testing: A Systematic Review and Economic Evaluation; Health Technology Assessment: Winchester, UK, 2020; Volume 24. [Google Scholar] [CrossRef]
- Kimura, K.; Watanabe, Y.; Umeda, M.; Arima, Y.; Watsuji, T.; Shinohara, S. Quantitative analysis of the relation between soft tissue stiffness palpated from the body surface and tissue hemodynamics in the human forearm. Physiol. Meas. 2007, 28, 1495–1505. [Google Scholar] [CrossRef] [PubMed]
- Bruyninckx, R.; Aertgeerts, B.; Bruyninckx, P.; Buntinx, F. Signs and symptoms in diagnosing acute myocardial infarction and acute coronary syndrome: A diagnostic meta-analysis. Br. J. Gen. Pr. 2008, 58, e1–e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.J.; Huang, T.-Y.; Luo, C.-H. Arterial Pulse Analysis of Multiple Dimension Pulse Mapping by Local Cold Stimulation for Arterial Stiffness. IEEE Sensors J. 2016, 16, 8288–8294. [Google Scholar] [CrossRef]
- Berg, A.C.; Malik, J. (Eds.) Shape Matching and Object Recognition. Workshop on toward Category-Level Object Recognition; Springer: Taormina, Italy, 2006. [Google Scholar] [CrossRef]
- Shi, J.; Yang, W.; Yong, L.; Zheng, X. Low-Rank Representation for Incomplete Data. Math. Probl. Eng. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Cao, L.; Li, H.; Guo, H.; Wang, B. Robust PCA for Face Recognition with Occlusion Using Symmetry Information. In Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada, 9–11 May 2019; pp. 232–328. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Ma, Y. Application of Data Denoising and Classification Algorithm Based on RPCA and Multigroup Random Walk Random Forest in Engineering. Math. Probl. Eng. 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Fang, H.; Chen, M.; Liu, X.; Yao, S. Infrared Small Target Detection with Total Variation and Reweighted ℓ1 Regularization. Math. Probl. Eng. 2020, 2020, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Yue, H.; Li, X.; Wang, H.; Chen, H.; Wang, X.; Cai, K. A New Approach for Noncontact Imaging Photoplethysmography Using Chrominance Features and Low-Rank in the IoT Operating Room. IEEE Access 2019, 7, 112284–112294. [Google Scholar] [CrossRef]
- Dao, M.; Suo, Y.; Chin, S.; Tran, T. (Eds.) Video Frame Interpolation via Weighted Robust Principal Component Analysis. In Proceedings of the 2013 IEEE International Conference On Acoustics, Speech And Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L. Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision. Int. J. Comput. Vis. 2016, 121, 183–208. [Google Scholar] [CrossRef]
- Li, F.; Akagi, M. Weighted Robust Principal Component Analysis with Gammatone Auditory Filterbank for Singing Voice Separation. In Neural Information Processing; Lecture Notes in Computer Science 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 849–858. [Google Scholar] [CrossRef]
- Liu, J.; Pahlevan, N.M. The underlying mechanism of intersite discrepancies in ejection time measurements from arterial waveforms and its validation in the Framingham Heart Study. Am. J. Physiol. Circ. Physiol. 2021, 321, H135–H148. [Google Scholar] [CrossRef]
- Kaya, M.; Balasubramanian, V.; Ge, Y.; Li, J.K.-J. Energetically wasteful wave reflections due to impedance mismatching in hypertension and their reversal with vasodilator: Time and frequency domain evaluations. Comput. Biol. Med. 2019, 104, 117–126. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, B.; Luo, C.-H.; Tai, C.-C. ANFIS-GA system for three-dimensional pulse image of normal and string-like pulse in Chinese medicine using an improved contour analysis method. Eur. J. Integr. Med. 2021, 42, 101301. [Google Scholar] [CrossRef]
- Li, D.; Yan, E. An Improved GPR Method Based on BP and RPCA for Tunnel Lining Defects Detection and Its Application in Qiyue Mountain Tunnel, China. Appl. Sci. 2021, 11, 10234. [Google Scholar] [CrossRef]
Method | Wavelet | VMD | RPCA | WRPCA | Proposed Method | |
---|---|---|---|---|---|---|
TAE (s) | t1 | 4.267 ± 1.964 | 3.000 ± 1.864 | 0.784 ± 0.854 | 0.784 ± 0.854 | 0.784 ± 0.854 |
t2 | 11.375 ± 4.498 | 14.286 ± 3.954 | 2.757 ± 2.910 | 2.730 ± 2.941 | 2.730 ± 2.891 | |
ARE (%) | h1 | 8.330 ± 6.140 | 1.770 ± 0.880 | 1.090 ± 0.500 | 0.470 ± 0.410 | 0.366 ± 0.286 |
h2 | 16.760 ± 9.210 | 12.740 ± 6.810 | 2.760 ± 2.710 | 2.280 ± 2.740 | 2.348 ± 2.704 | |
AIx | 0.113 ± 0.056 | 0.1340 ± 0.073 | 0.020 ± 0.025 | 0.022 ± 0.027 | 0.022 ± 0.026 |
p-Value | Wavelet | VMD | RPCA | WRPCA | Our Proposed | ||
---|---|---|---|---|---|---|---|
TAE (s) | t1 | Wavelet | |||||
VMD | 0.0295 * | ||||||
RPCA | 0.0000 * | 0.0000 * | |||||
WRPCA | 0.0000 * | 0.0000 * | 1.0000 | ||||
Proposed method | 0.0000 * | 0.0000 * | 1.0000 | 1.0000 | |||
t2 | Wavelet | ||||||
VMD | 0.0487 * | ||||||
RPCA | 0.0000 * | 0.0000 * | |||||
WRPCA | 0.0000 * | 0.0000 * | 0.9684 | ||||
Proposed method | 0.0000 * | 0.0000 * | 0.9684 | 1.0000 | |||
ARE (%) | h1 | Wavelet | |||||
VMD | 0.0000 * | ||||||
RPCA | 0.0000 * | 0.0000 * | |||||
WRPCA | 0.0000 * | 0.0000 * | 0.0000 * | ||||
Proposed method | 0.0000 * | 0.0000 * | 0.0000 * | 0.2086 | |||
h2 | Wavelet | ||||||
VMD | 0.0954 | ||||||
RPCA | 0.0000 * | 0.0000 * | |||||
WRPCA | 0.0000 * | 0.0000 * | 0.4464 | ||||
Proposed method | 0.0000 * | 0.0000 * | 0.5155 | 0.9114 | |||
AIx | Wavelet | ||||||
VMD | 0.2420 | ||||||
RPCA | 0.0000 * | 0.0000 * | |||||
WRPCA | 0.0000 * | 0.0000 * | 0.7563 | ||||
Proposed method | 0.0000 * | 0.0000 * | 0.8065 | 0.9462 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Gong, K.; Chen, Z.; Chen, C.; Zhang, Z.; Xie, X.; Chen, X.; Tai, C.-C. Cross-Channel Dynamic Weighting RPCA: A De-Noising Algorithm for Multi-Channel Arterial Pulse Signal. Appl. Sci. 2022, 12, 2931. https://doi.org/10.3390/app12062931
Peng B, Gong K, Chen Z, Chen C, Zhang Z, Xie X, Chen X, Tai C-C. Cross-Channel Dynamic Weighting RPCA: A De-Noising Algorithm for Multi-Channel Arterial Pulse Signal. Applied Sciences. 2022; 12(6):2931. https://doi.org/10.3390/app12062931
Chicago/Turabian StylePeng, Bo, Kaifeng Gong, Zhendong Chen, Chao Chen, Zhan Zhang, Xiaohua Xie, Xihong Chen, and Cheng-Chi Tai. 2022. "Cross-Channel Dynamic Weighting RPCA: A De-Noising Algorithm for Multi-Channel Arterial Pulse Signal" Applied Sciences 12, no. 6: 2931. https://doi.org/10.3390/app12062931
APA StylePeng, B., Gong, K., Chen, Z., Chen, C., Zhang, Z., Xie, X., Chen, X., & Tai, C.-C. (2022). Cross-Channel Dynamic Weighting RPCA: A De-Noising Algorithm for Multi-Channel Arterial Pulse Signal. Applied Sciences, 12(6), 2931. https://doi.org/10.3390/app12062931