Electromyography, Wavelet Analysis and Muscle Co-Activation as Comprehensive Tools of Movement Pattern Assessment for Injury Prevention in Wheelchair Fencing
Abstract
:1. Introduction
- Muscles of the abdomen and the back play a significant role in the muscle activation structure, and they are activated earlier on par with the activation of the sword arm extensor (TRI);
- Longer activation of most muscles in Group B fencers is expected, since these muscles play a stabilizing role, protecting against injuries.
2. Material and Methods
2.1. Participants
2.2. Methods and Tools
2.3. Co-Activation Index (CI)
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fairbairn, J.R.; Huxel Bliven, K.C. Incidence of Shoulder Injury in Elite Wheelchair Athletes Differ Between Sports: A Critically Appraised Topic. J. Sport Rehabil. 2019, 28, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Molik, B.; Marszałek, J. The specificity of injuries in Paralympics sport. Adv. Rehabil. 2013, 27, 41–46. [Google Scholar] [CrossRef]
- Borysiuk, Z.; Nowicki, T.; Piechota, K.; Błaszczyszyn, M. Neuromuscular, perceptual, and temporal determinants of movement patterns in wheelchair fencing: Preliminary study. BioMed Res. Int. 2020, 2020, 6584832. [Google Scholar] [CrossRef]
- Borysiuk, Z.; Nowicki, T.; Piechota, K.; Błaszczyszyn, M.; Konieczny, M.; Witkowski, M. Movement patterns and sensori-motor responses: Comparison of men and women in wheelchair fencing based on the Polish Paralympic team. Arch. Budo 2020, 16, 19–26. [Google Scholar]
- Chung, W.M.; Yeung, S.; Wong, A.Y.L.; Lam, I.F.; Tse, P.T.F.; Daswani, D.; Lee, R. Musculoskeletal Injuries in Elite Able-Bodied and Wheelchair Foil Fencers—A Pilot Study. Clin. J. Sport Med. 2012, 22, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Willick, S.E.; Webborn, N.; Emery, C.; A Blauwet, C.; Pit-Grosheide, P.; Stomphorst, J.; Van de Vliet, P.; Marques, N.A.P.; Martinez-Ferrer, J.O.; Jordaan, E.; et al. The epidemiology of injuries at the London 2012 Paralympic Games. Br. J. Sports Med. 2013, 47, 426–432. [Google Scholar] [CrossRef]
- Blauwet, C.A.; Cushman, D.; Emery, C.; Willick, S.E.; Webborn, N.; Derman, W.; Schwellnus, M.; Stomphorst, J.; Van De Vliet, P. Risk of Injuries in Paralympic Track and Field Differs by Impairment and Event Discipline. Am. J. Sports Med. 2016, 44, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Derman, W.; Schwellnus, M.; Jordaan, E.; Blauwet, C.A.; Emery, C.; Pit-Grosheide, P.; Marques, N.-A.P.; Martinez-Ferrer, O.; Stomphorst, J.; Van de Vliet, P.; et al. Illness and injury in athletes during the competition period at the London 2012 Paralympic Games: Development and implementation of a web-based surveillance system (WEB-IISS) for team medical staff. Br. J. Sports Med. 2013, 47, 420–425. [Google Scholar] [CrossRef] [Green Version]
- Derman, W.; Runciman, P.; Schwellnus, M.; Jordaan, E.; Blauwet, C.; Webborn, N.; Lexell, J.; Van De Vliet, P.; Tuakli-Wosornu, Y.; Kissick, J.; et al. High precompetition injury rate dominates the injury profile at the Rio 2016 Summer Paralympic Games: A prospective cohort study of 51 198 athlete days. Br. J. Sports Med. 2017, 52, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Harmer, P. Incidence and characteristics of time-loss injuries in competitive fencing: A prospective, 5-year study of national competitions. Clin. J. Sport Med. 2008, 18, 137–142. [Google Scholar] [CrossRef]
- Le, P.; Best, T.M.; Khan, S.N.; Mendel, E.; Marras, W.S. A review of methods to assess coactivation in the spine. J. Electromyogr. Kinesiol. 2016, 32, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Lundy-Ekman, L. Neuroscience—E-Book: Fundamentals for Rehabilitation, 4th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013; pp. 190–220. [Google Scholar]
- Hamada, T.; Sale, D.G.; MacDougall, J.D.; Tarnopolsky, M.A. Postactivation potentiation, fibre type, and twitch contraction time in human knee extensor muscles. J. Appl. Physiol. 2000, 88, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Bazzucchi, I.; Felici, F.; Macaluso, A.; De Vito, G. Differences between young and older women in maximal force, force fluctuations, and surface EMG during isometric knee extension and elbow flexion. Muscle Nerve 2004, 30, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Arabatzi, F.; Papadopoulos, C. Muscle co-activation around the knee in drop jumping using the co-contraction index. J. Electromyogr. Kinesiol. 2003, 13, 229–238. [Google Scholar] [CrossRef]
- Crotty, E.D.; Furlong, L.-A.M.; Hayes, K.; Harrison, A.J. Onset detection in surface electromyographic signals across isometric explosive and ramped contractions: A comparison of computer-based methods. Physiol. Meas. 2021, 42, 035010. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Falconer, K.; Winter, D.A. Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr. Clin. Neurophysiol. 1985, 25, 135–149. [Google Scholar]
- Fung, Y.-K.; Chan, D.K.-C.; Caudwell, K.; Chow, B. Is the Wheelchair fencing classification fair enough? A kinematic analysis among world-class wheelchair fencers. Eur. J. Adapt. Phys. Act. 2013, 6, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Akbaş, A.; Marszałek, W.; Bacik, B.; Juras, G. Two Aspects of Feedforward Control During a Fencing Lunge: Early and Anticipatory Postural Adjustments. Front. Hum. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Borysiuk, Z.; Cynarski, J.W. Psychomotor aspects of talent identification; A new approach in the case of fencing. Arch. Budo 2009, 16, 91–94. [Google Scholar]
- Smith, J.A.; Ignasiak, N.K.; Jacobs, J.V. Task-invariance and reliability of anticipatory postural adjustments in healthy young adults. Gait Posture 2020, 76, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Haubert, L.L.; Mulroy, S.J.; Requejo, P.S.; Maneekobkunwong, S.; Gronley, J.K.; Rankin, J.W.; Rodriguez, D.; Hong, K. Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia. J. Spinal Cord Med. 2019, 43, 594–606. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Tomczak, M.; Bronikowski, M.; Marciniak, M.; Borysiuk, Z. Visual Perception Strategies of Foil Fencers Facing Right-Versus Left-Handed Opponents. Percept. Mot. Skills 2018, 125, 612–625. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, T.W.; van Wijk, B.C.; Praamstra, P.; Daffertshofer, A. Corticomuscular and bilateral EMG coherence reflect distinct aspects of neural synchronization. Neurosci. Lett. 2009, 463, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Quinzi, F.; Camomilla, V.; Felici, F.; Di Mario, A.; Sbriccoli, P. Differences in neuromuscular control between impact and no impact roundhouse kick in athletes of different skill levels. J. Electromyogr. Kinesiol. 2013, 23, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Szczęsna, A.; Błaszczyszyn, M.; Pawlyta, M. Optical motion capture dataset of selected techniques in beginner and advanced Kyokushin karate athletes. Sci. Data 2021, 8, 13. [Google Scholar] [CrossRef]
- Błaszczyszyn, M.; Borysiuk, Z.; Piechota, K.; Kręcisz, K.; Zmarzły, D. Wavelet coherence as a measure of trunk stabilizer muscle activation in wheelchair fencers. BMC Sports Sci. Med. Rehabil. 2021, 13, 140. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borysiuk, Z.; Błaszczyszyn, M.; Piechota, K.; Cynarski, W.J. Electromyography, Wavelet Analysis and Muscle Co-Activation as Comprehensive Tools of Movement Pattern Assessment for Injury Prevention in Wheelchair Fencing. Appl. Sci. 2022, 12, 2430. https://doi.org/10.3390/app12052430
Borysiuk Z, Błaszczyszyn M, Piechota K, Cynarski WJ. Electromyography, Wavelet Analysis and Muscle Co-Activation as Comprehensive Tools of Movement Pattern Assessment for Injury Prevention in Wheelchair Fencing. Applied Sciences. 2022; 12(5):2430. https://doi.org/10.3390/app12052430
Chicago/Turabian StyleBorysiuk, Zbigniew, Monika Błaszczyszyn, Katarzyna Piechota, and Wojciech J. Cynarski. 2022. "Electromyography, Wavelet Analysis and Muscle Co-Activation as Comprehensive Tools of Movement Pattern Assessment for Injury Prevention in Wheelchair Fencing" Applied Sciences 12, no. 5: 2430. https://doi.org/10.3390/app12052430
APA StyleBorysiuk, Z., Błaszczyszyn, M., Piechota, K., & Cynarski, W. J. (2022). Electromyography, Wavelet Analysis and Muscle Co-Activation as Comprehensive Tools of Movement Pattern Assessment for Injury Prevention in Wheelchair Fencing. Applied Sciences, 12(5), 2430. https://doi.org/10.3390/app12052430