Nano Scaled Checkerboards: A Long Range Ordering in NiCoMnAl Magnetic Shape Memory Alloy Thin Films with Martensitic Intercalations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Crystalline Structure
3.2. Temperature Dependence
3.3. Influence of the Layer Thicknesses on the Checkerboard Formation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duerig, T.; Pelton, A.; Stöckel, D. An overview of nitinol medical applications. Mater. Sci. Eng. A 1999, 273–275, 149–160. [Google Scholar] [CrossRef]
- Hartl, D.J.; Lagoudas, D.C. Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2007, 221, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Ullakko, K.; Huang, J.K.; Kantner, C.; O’Handley, R.C.; Kokorin, V.V. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 1996, 69, 1966–1968. [Google Scholar] [CrossRef]
- Saren, A.; Smith, A.R.; Ullakko, K. Integratable magnetic shape memory micropump for high-pressure, precision microfluidic applications. Microfluid. Nanofluid. 2018, 22, 38. [Google Scholar] [CrossRef]
- Minorowicz, B.; Leonetti, G.; Stefanski, F.; Binetti, G.; Naso, D. Design, modelling and control of a micropositioning actuator based on magnetic shape memory alloys. Smart Mater. Struct. 2016, 25, 075005. [Google Scholar] [CrossRef]
- Karaman, I.; Basaran, B.; Karaca, H.E.; Karsilayan, A.I.; Chumlyakov, Y.I. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 2007, 90, 172505. [Google Scholar] [CrossRef]
- Schleicher, B.; Niemann, R.; Diestel, A.; Hühne, R.; Schultz, L.; Fähler, S. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications. J. Appl. Phys. 2015, 118, 053906. [Google Scholar] [CrossRef]
- Sarawate, N.; Dapino, M. Experimental characterization of the sensor effect in ferromagnetic shape memory ni–mn–ga. Appl. Phys. Lett. 2006, 88, 121923. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.K.; Lagoudas, D.C. Introduction to Shape Memory Alloys. In Shape Memory Alloys; Springer: Boston, MA, USA, 2008; pp. 1–51. [Google Scholar]
- Liu, J.; Gottschall, T.; Skokov, K.P.; Moore, J.D.; Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mat. 2012, 11, 620–626. [Google Scholar] [CrossRef]
- Neibecker, P.; Gruner, M.E.; Xu, X.; Kainuma, R.; Petry, W.; Pentcheva, R.; Leitner, M. Ordering tendencies and electronic properties in quaternary Heusler derivatives. Phys. Rev. B 2017, 96, 165131. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ito, W.; Tokunaga, M.; Kihara, T.; Oka, K.; Umetsu, R.Y.; Kanomata, T.; Kainuma, R. The Thermal Transformation Arrest Phenomenon in NiCoMnAl Heusler Alloys. Metals 2013, 3, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Weise, B.; Dutta, B.; Teichert, N.; Hütten, A.; Hickel, T.; Waske, A. Role of disorder when upscaling magnetocaloric Ni-Co-Mn-Al heusler alloys from thin films to ribbons. Sci. Rep. 2018, 8, 9147. [Google Scholar] [CrossRef]
- Diestel, A.; Chekhonin, P.; Niemann, R.; Skrotzki, W.; Nielsch, K.; Fähler, S. Reducing thermal hysteresis in epitaxial Ni-Mn-Ga-Co films by transformation cycling. Phys. Status Solidi B 2018, 255, 1700330. [Google Scholar] [CrossRef]
- Scheibel, F.; Gottschall, T.; Taubel, A.; Fries, M.; Skokov, K.P.; Terwey, A.; Keune, W.; Ollefs, K.; Wende, H.; Farle, M.; et al. Hysteresis design of magnetocaloric materials-from basic mechanisms to applications. Energy Technol. 2018, 6, 1397–1428. [Google Scholar] [CrossRef] [Green Version]
- Taubel, A.; Gottschall, T.; Fries, M.; Riegg, S.; Soon, C.; Skokov, K.P.; Gutfleisch, O.A. Comparative Study on the Magnetocaloric Properties of Ni-Mn-X(-Co) Heusler Alloys. Phys. Status Solidi B 2017, 255, 1700331. [Google Scholar] [CrossRef]
- Devi, P.; Salazar, M.C.; Caron, L.; Singh, S.; Nicklas, M.; Felser, C. Effect of chemical and hydrostatic pressure on the coupled magnetostructural transition of Ni-Mn-In Heusler alloys. Phys. Rev. Mat. 2019, 3, 122401. [Google Scholar] [CrossRef] [Green Version]
- Gottschall, T.; Stern-Taulats, E.; Mañosa, L.; Planes, A.; Konstantin, P.S.; Gutfleisch, O. Reversibility of minor hysteresis loops in magnetocaloric Heusler alloys. Appl. Phys. Lett. 2017, 110, 223904. [Google Scholar] [CrossRef]
- Becker, A.; Ramermann, D.; Ennen, I.; Büker, B.; Matalla-Wagner, T.; Gottschalk, M.; Hütten, A. The influence of Martensitic Intercalations in Magnetic Shape Memory NiCoMnAl Multilayered Films. Entropy 2021, 23, 462. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–31. [Google Scholar]
- Donelan, P. Modelling microstructural and mechanical properties of ferritic ductile cast iron. Mater. Sci. Technol. 2000, 16, 261–269. [Google Scholar] [CrossRef]
- Osório, W.R.; Santos, C.A.; Quaresma, J.M.V.; Garcia, A. Mechanical properties as a function of thermal parameters and microstructure for Zn-Al castings. J. Mater. Proc. Technol. 2003, 143, 703–709. [Google Scholar] [CrossRef]
- Lloyd, D.J.; Court, S. Influence of grain size on tensile properties of Al-Mg alloys. Mater. Sci. Technol. 2003, 19, 1349–1354. [Google Scholar] [CrossRef]
- Osório, W.R.; Cheung, N.; Spinelli, J.E.; Goulart, P.R.; Garcia, A. The effects of a eutectic modifier on microstructure and surface corrosion behavior of Al-Si hypoeutectic alloys. J. Solid State Electrochem. 2007, 11, 1421–1427. [Google Scholar] [CrossRef]
- Bonatti, R.S.; Meyer, Y.A.; Bortolozo, A.D.; Costa, D.; Osório, W.R. Morphology and size effects on densification and mechanical behavior of sintered powders from Al-Si and Al-Cu casting alloys. J. Alloys Compd. 2019, 786, 717–732. [Google Scholar] [CrossRef]
- Meyer, Y.A.; Bonatti, R.S.; Costa, D.; Bortolozo, A.D.; Osório, W.R. Compaction pressure and Si content effects on compressive strengths of Al-Si/Cu alloy composites. Mater Sci. Eng. A 2020, 770, 138547. [Google Scholar] [CrossRef]
- Wodniok, M.; Teichert, N.; Helmich, L.; Hütten, A. How to enable bulk-like martensitic transformation in epitaxial films. AIP Adv. 2017, 7, 056428. [Google Scholar] [CrossRef] [Green Version]
- Koch, C. Determination of Core Structure Periodicity and Point Defect Density along Dislocations. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2002. [Google Scholar]
- Williams, D.B.; Carter, C.B. Transmission Electron Microscopy—A Textbook for Materials Science; Plenum Press: New York, NY, USA, 1994; pp. 444–448. [Google Scholar]
- Teichert, N.; Kucza, D.; Yildirim, O.; Yuzuak, E.; Dincer, I.; Behler, A.; Weise, B.; Helmich, L.; Boehnke, A.; Klimova, S.; et al. Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films. Phys. Rev. B 2015, 91, 184405. [Google Scholar] [CrossRef] [Green Version]
- Niemann, R.I. Nukleation und Wachstum des Adaptiven Martensits in Epitaktischen Schichten der Fromgedächtnislegierung Ni-Mn-Ga. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2015. [Google Scholar]
Sample Name | MI Number | MI Thickness [nm] | AL Number | AL Thickness [nm] |
---|---|---|---|---|
MI7-30/100 | 7 | 30 | 6 | 100 |
MI6-30/30 | 6 | 30 | 5 | 30 |
MI6-30/50 | 6 | 30 | 5 | 50 |
MI6-10/30 | 6 | 10 | 5 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramermann, D.; Becker, A.; Büker, B.; Hütten, A.; Ennen, I. Nano Scaled Checkerboards: A Long Range Ordering in NiCoMnAl Magnetic Shape Memory Alloy Thin Films with Martensitic Intercalations. Appl. Sci. 2022, 12, 1748. https://doi.org/10.3390/app12031748
Ramermann D, Becker A, Büker B, Hütten A, Ennen I. Nano Scaled Checkerboards: A Long Range Ordering in NiCoMnAl Magnetic Shape Memory Alloy Thin Films with Martensitic Intercalations. Applied Sciences. 2022; 12(3):1748. https://doi.org/10.3390/app12031748
Chicago/Turabian StyleRamermann, Daniela, Andreas Becker, Björn Büker, Andreas Hütten, and Inga Ennen. 2022. "Nano Scaled Checkerboards: A Long Range Ordering in NiCoMnAl Magnetic Shape Memory Alloy Thin Films with Martensitic Intercalations" Applied Sciences 12, no. 3: 1748. https://doi.org/10.3390/app12031748
APA StyleRamermann, D., Becker, A., Büker, B., Hütten, A., & Ennen, I. (2022). Nano Scaled Checkerboards: A Long Range Ordering in NiCoMnAl Magnetic Shape Memory Alloy Thin Films with Martensitic Intercalations. Applied Sciences, 12(3), 1748. https://doi.org/10.3390/app12031748