Development of 0.34 THz Sub-Harmonic Mixer Combining Two-Stage Reduced Matching Technology with an Improved Active Circuit Model
Abstract
1. Introduction
2. Mixer Design
2.1. Schottky Diode
2.2. Improved Active Circuit Model
2.3. Filters, RF Transition Model and LO-IF Diplexer Model
2.4. Simulation
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harter, T.; Füllner, C.; Kemal, J.N.; Ummethala, S.; Steinmann, J.L.; Brosi, M.; Hesler, J.L.; Bründermann, E.; Müller, A.S.; Freude, W.; et al. Generalized Kramers–Kronig receiver for coherent terahertz communications. Nat. Photonics 2020, 14, 601–606. [Google Scholar] [CrossRef]
- Hillger, P.; Grzyb, J.; Jain, R.; Pfeiffer, U.R. Terahertz Imaging and Sensing Applications With Silicon-Based Technologies. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Melikyan, A.; Kim, K.; Fontaine, N.; Chandrasekhar, S.; Chen, Y.K.; Dong, P. Inter-polarization mixers for coherent detection of optical signals. Opt. Express 2018, 26, 18523–18531. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, B.; Ji, D.; Zhao, X.; Fan, Y.; Chen, X. Development of a Wideband 220-GHz Subharmonic Mixer Based on GaAs Monolithic Integration Technology. IEEE Access 2020, 8, 31214–31226. [Google Scholar] [CrossRef]
- Yang, F.; Meng, H.F.; Duo, W.B.; Sun, Z.L. Terahertz Sub-harmonic Mixer Using Discrete Schottky Diode for Planetary Science and Remote Sensing. J. Infrared Millim. Terahertz Waves 2017, 38, 630–637. [Google Scholar] [CrossRef]
- Schlecht, E.; Siles, J.V.; Lee, C.; Lin, R.; Thomas, B.; Chattopadhyay, G.; Mehdi, I. Schottky Diode Based 1.2 THz Receivers Operating at Room-Temperature and Below for Planetary Atmospheric Sounding. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 661–669. [Google Scholar] [CrossRef]
- Chen, C.P.; Jung-Kubiak, C.; Lin, R.H.; Hayton, D.J.; Maestrini, A.E.; Siles, J.; Lee, C.; Peralta, A.; Mehdi, I. Silicon Micromachined Waveguide Circuit for a 2 THz Schottky Receiver: Progress and Challenges. IEEE J. Microw. 2022, 2, 592–598. [Google Scholar] [CrossRef]
- Jayasankar, D.; Drakinskiy, V.; Sobis, P.; Stake, J. Development of Supra-THz Schottky Diode Harmonic Mixers. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021; pp. 1–2. [Google Scholar]
- Mehdi, I.; Siles, J.V.; Lee, C.; Schlecht, E. THz Diode Technology: Status, Prospects, and Applications. Proc. IEEE 2017, 105, 990–1007. [Google Scholar] [CrossRef]
- Gaojian, L.; Jun, L.; Hui, X.; Xiaoyang, Z.; Shuantao, L.; Hongxi, Y. Design of a 220GHz Subharmonic Mixer Based on Plannar Schottky Diode. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 418–421. [Google Scholar]
- Zhang, Y.; Zhao, W.; Wang, Y.; Ren, T.; Chen, Y. A 220 GHzsubharmonic mixer based on schottky diodes with an accurate terahertz diode model. Microw. Opt. Technol. Lett. 2016, 58, 2311–2316. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Zheng, Q.; Feng, Z.; Xu, R.; Yan, B. Research on 330GHz Subharmonic Mixer Based on Global Design Method. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 168–170. [Google Scholar]
- Cui, J.; Zhang, Y.; Liu, X.; Li, Y.; Wu, C. Design of 199 to 238 GHz broadband subharmonic mixer combining two-stage reduced matching technology with Global Design Method. Int. J. Numer. Model. Electron. Netw. Devices Fields 2019, 33, e2581. [Google Scholar] [CrossRef]
- Yi-Lin, Y.; Bo, Z.; Dong-Feng, J.I.; Yi-Wei, W.; Xiang-Yang, Z.; Yong, F.A.N. A wideband terahertz planar Schottky diode fourth-harmonic mixer with low LO power requirement. J. Infrared Millim. Waves 2020, 39, 540–546. [Google Scholar]
- Tang, A.Y.; Stake, J. Impact of Eddy Currents and Crowding Effects on High-Frequency Losses in Planar Schottky Diodes. IEEE Trans. Electron Devices 2011, 58, 3260–3269. [Google Scholar] [CrossRef]
- Ji, G.; Zhang, D.; Meng, J.; Liu, S.; Yao, C. Design and Measurement of a 0.67 THz Biased Sub-Harmonic Mixer. Electronics 2020, 9, 161. [Google Scholar] [CrossRef]
- Thomas, B.; Rea, S.; Moyna, B.; Alderman, B.; Matheson, D. A 320–360 GHz Subharmonically Pumped Image Rejection Mixer Using Planar Schottky Diodes. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 101–103. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Feng, Y.; Lv, X.; Ji, D.; Niu, Z.; Yang, Y.; Zhao, X.; Fan, Y. Development of 340-GHz Transceiver Front End Based on GaAs Monolithic Integration Technology for THz Active Imaging Array. Appl. Sci. 2020, 10, 7924. [Google Scholar] [CrossRef]
- Guo, C.; Shang, X.; Lancaster, M.J.; Xu, J.; Powell, J.; Wang, H.; Parow-Souchon, K.; Henry, M.; Viegas, C.; Alderman, B.; et al. A 290–310 GHz Single Sideband Mixer With Integrated Waveguide Filters. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 446–454. [Google Scholar] [CrossRef]
Ref. | Freq (GHz) | Conversion Loss (dB) | LO Power (mW) | RF Return Loss (dB) | Reduced Matching Technology | Method |
---|---|---|---|---|---|---|
[13] | 200–240 | 7–12 (SSB) 7.84 (min) | 3 | N.A. | Two-stage | GDM |
[17] | 320–360 | 7.2–24.1 (SSB) 15 (average) | 7–11 | N.A. | Single-stage | N.A. |
[18] | 320–360 | 7–10 (DSB) 6.9 (min) | 6 | N.A. | Single-stage | GDM |
[19] | 290–310 | 9–10 (SSB) 6–8 (DSB) | 2.5–3 | >10 | Single-stage | SDM |
This work | 320–360 | 9–12 (SSB) 8.95 (min) | 5.5 | >12 | Two-stage | An improved active circuit model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Yang, P.; Sun, X.; Liang, S.; Zhang, Y. Development of 0.34 THz Sub-Harmonic Mixer Combining Two-Stage Reduced Matching Technology with an Improved Active Circuit Model. Appl. Sci. 2022, 12, 12855. https://doi.org/10.3390/app122412855
Feng W, Yang P, Sun X, Liang S, Zhang Y. Development of 0.34 THz Sub-Harmonic Mixer Combining Two-Stage Reduced Matching Technology with an Improved Active Circuit Model. Applied Sciences. 2022; 12(24):12855. https://doi.org/10.3390/app122412855
Chicago/Turabian StyleFeng, Wei, Penglin Yang, Xuechun Sun, Shixiong Liang, and Yaxin Zhang. 2022. "Development of 0.34 THz Sub-Harmonic Mixer Combining Two-Stage Reduced Matching Technology with an Improved Active Circuit Model" Applied Sciences 12, no. 24: 12855. https://doi.org/10.3390/app122412855
APA StyleFeng, W., Yang, P., Sun, X., Liang, S., & Zhang, Y. (2022). Development of 0.34 THz Sub-Harmonic Mixer Combining Two-Stage Reduced Matching Technology with an Improved Active Circuit Model. Applied Sciences, 12(24), 12855. https://doi.org/10.3390/app122412855