OTSU Multi-Threshold Image Segmentation Based on Improved Particle Swarm Algorithm
Abstract
:1. Introduction
- (1)
- An Improved PSO algorithm is proposed, in which (a) chaos optimization was added to reduce premature convergence; (b) elite particle search strategy to particle swarm optimization algorithm was used to reduce optimization time and improve efficiency; (c) learning factors were improved to balance local search and global search.
- (2)
- Combining PSO with OTSU algorithm, a gray image segmentation algorithm based on improved particle swarm optimization is proposed. The proposed improved particle swarm optimization segmentation algorithm can search for a more accurate threshold, thus promoting better component division of gray-scale images.
- (3)
- Some classical test functions are selected to verify the robustness and development of the algorithm in solving single peak, multi-peak, and multi-peak fixed dimension functions.
- (4)
- Compared with the multi threshold segmentation of some standard algorithms, the performance of the improved PSO segmentation algorithm was verified, and the effectiveness of the algorithm on images was verified through multi-threshold image segmentation experiments on PASCAL 2012 dataset images. Experiments show that the method in this paper is faster than other meta heuristic algorithms in OTSU threshold segmentation, and PSNR FSIM and SSIM performance indicators verify that the algorithm in this paper has higher accuracy in image segmentation.
2. Multi-Threshold OTSU Segmentation Model
3. Particle Swarm Algorithm
4. Multi-Threshold Segmentation Algorithm Based on Improved PSO
4.1. Linear Optimization Learning Factor
4.2. Elite Particle Search Strategy
4.3. Our Method and Process
5. Experimental Analysis
5.1. Experimental Environment
5.2. Benchmark Function
5.3. Segmentation Experiment and Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PSO | Particle swarm algorithm |
PSNR | Peak-Signal-to-Noise-Ratio |
FSIM | Feature similarity |
SSIM | Structural Similarity |
References
- Cheng, Y.; Li, B. Image Segmentation Technology and Its Application in Digital Image Processing. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2021; pp. 1174–1177. [Google Scholar]
- Chakraborty, F.; Roy, P.K.; Nandi, D. Oppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholding. Evol. Intell. 2019, 12, 445–467. [Google Scholar]
- Abd Elaziz, M.; Oliva, D.; Ewees, A.A.; Xiong, S. Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer. Expert Syst. Appl. 2019, 125, 112–129. [Google Scholar]
- Upadhyay, P.; Chhabra, J.K. Kapur’s entropy based optimal multilevel image segmentation using crow search algorithm. Appl. Soft Comput. 2020, 97, 105522. [Google Scholar]
- Yazid, H.; Basah, S.N.; Rahim, S.A.; Safar, M.J.A.; Basaruddin, K.S. Performance analysis of entropy thresholding for successful image segmentation. Multimed. Tools Appl. 2022, 81, 6433–6450. [Google Scholar]
- Mahajan, S.; Mittal, N.; Pandit, A.K. Image segmentation using multilevel thresholding based on type II fuzzy entropy and marine predators algorithm. Multimed. Tools Appl. 2021, 80, 19335–19359. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, J.; Ji, X.; Yin, Y.; Shen, X. An ameliorated teaching–learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance. Inf. Sci. 2020, 533, 72–107. [Google Scholar]
- Houssein, E.H.; Helmy, B.E.d.; Oliva, D.; Jangir, P.; Premkumar, M.; Elngar, A.A.; Shaban, H. An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer. Biomed. Signal Process. Control 2022, 73, 103401. [Google Scholar]
- Sharma, S.; Saha, A.K.; Majumder, A.; Nama, S. MPBOA—A novel hybrid butterfly optimization algorithm with symbiosis organisms search for global optimization and image segmentation. Multimed. Tools Appl. 2021, 80, 12035–12076. [Google Scholar]
- Elaziz, M.E.A.; Heidari, A.A.; Fujita, H.; Moayedi, H. A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl. Soft Comput. 2020, 95, 106347. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; An, Z. FCM fuzzy clustering image segmentation algorithm based on fractional particle swarm optimization. J. Intell. Fuzzy Syst. 2020, 38, 3575–3584. [Google Scholar]
- Zhao, D.; Liu, L.; Yu, F.; Heidari, A.A.; Wang, M.; Oliva, D.; Muhammad, K.; Chen, H. Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation. Expert Syst. Appl. 2021, 167, 114122. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Raj, S.; Bhattacharyya, B. Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm. Swarm Evol. Comput. 2018, 40, 131–143. [Google Scholar]
- Shiva, C.K.; Gudadappanavar, S.S.; Vedik, B.; Babu, R.; Raj, S.; Bhattacharyya, B. Fuzzy-Based Shunt VAR Source Placement and Sizing by Oppositional Crow Search Algorithm. J. Control. Autom. Electr. Syst. 2022, 33, 1576–1591. [Google Scholar]
- Babu, R.; Kumar, V.; Shiva, C.K.; Raj, S.; Bhattacharyya, B. Application of Sine–Cosine Optimization Algorithm for Minimization of Transmission Loss. Technol. Econ. Smart Grids Sustain. Energy 2022, 7, 6. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Yu, F.; Heidari, A.A.; Zhang, Y.; Chen, H.; Li, C.; Pan, J.; Quan, S. Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images. Comput. Biol. Med. 2022, 142, 105181. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Heidari, A.A.; Kuang, F.; Zhang, S.; Chen, H.; Cai, Z. Quantum Nelder-Mead Hunger Games Search for optimizing photovoltaic solar cells. Int. J. Energy Res. 2022, 46, 12417–12466. [Google Scholar]
- Trojovskỳ, P.; Dehghani, M. Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef] [PubMed]
- Shabani, A.; Asgarian, B.; Gharebaghi, S.A.; Salido, M.A.; Giret, A. A new optimization algorithm based on search and rescue operations. Math. Probl. Eng. 2019, 2019, 2482543. [Google Scholar] [CrossRef]
- Oliva, D.; Elaziz, M.A. An improved brainstorm optimization using chaotic opposite-based learning with disruption operator for global optimization and feature selection. Soft Comput. 2020, 24, 14051–14072. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y. An Adaptive Bi-Mutation-Based Differential Evolution Algorithm for Multi-Threshold Image Segmentation. Appl. Sci. 2022, 12, 5759. [Google Scholar]
- Shetty, S. Application of convolutional neural network for image classification on Pascal VOC challenge 2012 dataset. arXiv 2016, arXiv:1607.03785. [Google Scholar]
- Liang, J.J.; Suganthan, P.N.; Deb, K. Novel composition test functions for numerical global optimization. In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, SIS 2005, Pasadena, CA, USA, 8–10 June 2005; pp. 68–75. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 IEEE 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar]
- Brunet, D.; Vrscay, E.R.; Wang, Z. On the mathematical properties of the structural similarity index. IEEE Trans. Image Process. 2011, 21, 1488–1499. [Google Scholar] [CrossRef] [PubMed]
- Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar]
Test Function | Type | Dim | Range | |
---|---|---|---|---|
= | US | 30 | 0 | |
= | US | 30 | 0 | |
= | US | 30 | 0 | |
= | US | 30 | 0 | |
= | UN | 30 | 0 | |
= | UN | 30 | 0 | |
= | UN | 30 | 0 | |
= | UN | 30 | 0 | |
= | FDM | 2 | ||
= | FDM | 2 | 0.398 | |
= | FDM | 2 | 3 | |
= | FDM | 4 | [0,10] |
Function | Mean (WOA) | Std (WOA) | Mean (BOA) | Std (BOA) | Mean (PSO) | Std (PSO) | Mean (OURS) | Std (OURS) |
---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | |||
0 | 0 | 0 | 0 | 0.23241 | 0 | 0 | ||
0 | 0 | 0.43910 | 0.18334 | 5.61222 | 0.73845 | 0 | 0 | |
0.00511 | 0.00429 | 0.00935 | 0.00903 | 0.69190 | 0.21219 | 0.00149 | 0.00065 | |
0 | 0 | 0 | 0 | 2.10830 | 0.27572 | 0 | 0 | |
0 | 0 | 0 | 0 | 0.00105 | 0.00168 | 0 | 0 | |
0.02203 | 0.01070 | 0.69756 | 0.08152 | 4.41429 | 1.81612 | 0.03898 | 0.07815 | |
0 | 0 | 0.01205 | 0.01832 | 0.50179 | 0.24452 | 0 | 0 | |
0 | N\A | N\A | 0 | 0 | ||||
0.39790 | 0.54290 | 0.30599 | 0.39789 | 0 | 0.39789 | |||
3.00001 | 3.04893 | 0.05603 | 3 | 0 | 3.00017 | 0.00025 | ||
3.34554 | 0.38772 | 3.24476 | 0.12228 |
Metric Name | Image | k | WOA | BOA | PSO | OURS |
---|---|---|---|---|---|---|
PSNR | Image1(000019) | 2 | 11.4924 | 12.6732 | 13.0284 | 13.7823 |
4 | 12.5075 | 13.7829 | 14.1673 | 14.7642 | ||
6 | 16.5389 | 17.2659 | 17.8454 | 19.6037 | ||
8 | 19.8595 | 20.4863 | 20.5269 | 21.3771 | ||
Image2(000436) | 2 | 13.1415 | 13.7986 | 14.5376 | 14.1383 | |
4 | 14.1361 | 14.5284 | 15.3228 | 15.6705 | ||
6 | 17.9243 | 17.9988 | 18.3650 | 19.3411 | ||
8 | 18.5029 | 19.2229 | 20.9130 | 21.9703 | ||
Image3(001478) | 2 | 13.3784 | 13.7194 | 13.7913 | 14.2379 | |
4 | 13.6647 | 14.1434 | 14.9181 | 15.4509 | ||
6 | 15.8758 | 16.4661 | 17.4344 | 18.6340 | ||
8 | 17.3109 | 17.6060 | 19.4388 | 20.3651 | ||
Image4(003579) | 2 | 13.6386 | 13.5726 | 14.4871 | 15.9936 | |
4 | 14.3408 | 14.7052 | 15.6358 | 15.7378 | ||
6 | 15.9297 | 16.6595 | 17.2260 | 18.2881 | ||
8 | 16.6926 | 16.8525 | 17.4432 | 19.6017 | ||
Image5(004423) | 2 | 15.1932 | 15.8189 | 15.5466 | 15.7275 | |
4 | 15.5115 | 16.2379 | 16.9289 | 16.8156 | ||
6 | 17.5728 | 18.8819 | 20.8917 | 21.7370 | ||
8 | 18.6900 | 19.9407 | 21.9854 | 23.3966 | ||
Image6(006404) | 2 | 13.8768 | 13.8550 | 14.9768 | 14.9706 | |
4 | 14.6173 | 14.7452 | 14.8361 | 15.7539 | ||
6 | 16.5043 | 17.5922 | 18.7453 | 19.1893 | ||
8 | 17.8543 | 18.5252 | 20.7008 | 21.1228 |
Metric Name | Image | k | WOA | BOA | PSO | OURS |
---|---|---|---|---|---|---|
SSIM | Image1(000019) | 2 | 0.4186 | 0.4628 | 0.4521 | 0.4955 |
4 | 0.4447 | 0.4559 | 0.5443 | 0.5968 | ||
6 | 0.4921 | 0.5161 | 0.6220 | 0.6973 | ||
8 | 0.6899 | 0.6930 | 0.7011 | 0.7333 | ||
Image2(000436) | 2 | 0.4336 | 0.4922 | 0.5550 | 0.5806 | |
4 | 0.4781 | 0.5615 | 0.5975 | 0.6381 | ||
6 | 0.5482 | 0.6102 | 0.6238 | 0.6676 | ||
8 | 0.5720 | 0.6267 | 0.6541 | 0.7895 | ||
Image3(001478) | 2 | 0.4299 | 0.4474 | 0.5120 | 0.5506 | |
4 | 0.5219 | 0.5774 | 0.6484 | 0.6386 | ||
6 | 0.5634 | 0.5971 | 0.6960 | 0.7235 | ||
8 | 0.6563 | 0.6857 | 0.7436 | 0.8154 | ||
Image4(003579) | 2 | 0.5610 | 0.5961 | 0.5969 | 0.5904 | |
4 | 0.5796 | 0.6057 | 0.6172 | 0.6714 | ||
6 | 0.6286 | 0.6411 | 0.6484 | 0.7172 | ||
8 | 0.6764 | 0.6938 | 0.7036 | 0.7297 | ||
Image5(004423) | 2 | 0.3469 | 0.3755 | 0.3758 | 0.4954 | |
4 | 0.4443 | 0.4570 | 0.5714 | 0.5978 | ||
6 | 0.5396 | 0.5680 | 0.6687 | 0.7178 | ||
8 | 0.6817 | 0.6638 | 0.7430 | 0.7746 | ||
Image6(006404) | 2 | 0.4216 | 0.4419 | 0.4675 | 0.4990 | |
4 | 0.4429 | 0.4723 | 0.5482 | 0.5745 | ||
6 | 0.4859 | 0.5186 | 0.5744 | 0.6482 | ||
8 | 0.5632 | 0.6114 | 0.6367 | 0.6861 |
Metric Name | Image | k | WOA | BOA | PSO | OURS |
---|---|---|---|---|---|---|
FSIM | Image1(000019) | 2 | 0.7053 | 0.7214 | 0.7423 | 0.7711 |
4 | 0.7278 | 0.7535 | 0.7861 | 0.8026 | ||
6 | 0.7596 | 0.7974 | 0.8013 | 0.8250 | ||
8 | 0.8058 | 0.8144 | 0.8224 | 0.8476 | ||
Image2(000436) | 2 | 0.6525 | 0.6934 | 0.7571 | 0.7918 | |
4 | 0.7120 | 0.7235 | 0.7610 | 0.8132 | ||
6 | 0.7350 | 0.7441 | 0.7832 | 0.8317 | ||
8 | 0.7582 | 0.7655 | 0.8086 | 0.8594 | ||
Image3(001478) | 2 | 0.6592 | 0.6763 | 0.7084 | 0.7135 | |
4 | 0.6795 | 0.6940 | 0.7288 | 0.7402 | ||
6 | 0.7110 | 0.7417 | 0.7643 | 0.7732 | ||
8 | 0.7390 | 0.7652 | 0.7864 | 0.8277 | ||
Image4(003579) | 2 | 0.7495 | 0.7634 | 0.7770 | 0.7953 | |
4 | 0.7679 | 0.7855 | 0.7921 | 0.8113 | ||
6 | 0.7869 | 0.8024 | 0.8275 | 0.8322 | ||
8 | 0.8139 | 0.8289 | 0.8411 | 0.8672 | ||
Image5(004423) | 2 | 0.7552 | 0.7695 | 0.7892 | 0.7859 | |
4 | 0.7723 | 0.7820 | 0.8118 | 0.8382 | ||
6 | 0.7965 | 0.7998 | 0.8367 | 0.8547 | ||
8 | 0.8185 | 0.8247 | 0.8559 | 0.8712 | ||
Image6(006404) | 2 | 0.6292 | 0.6467 | 0.6638 | 0.6779 | |
4 | 0.6482 | 0.6614 | 0.6735 | 0.7066 | ||
6 | 0.6684 | 0.6876 | 0.6910 | 0.7134 | ||
8 | 0.6835 | 0.7155 | 0.7334 | 0.7780 |
Metric Name | Image | k | WOA | BOA | PSO | OURS |
---|---|---|---|---|---|---|
Fitness | Image1(000019) | 2 | 1704.8574 | 1704.5298 | 1704.3760 | 1704.8259 |
4 | 2539.6813 | 2539.4239 | 2539.2458 | 2539.7578 | ||
6 | 2765.9773 | 2765.2783 | 2764.2456 | 2764.2568 | ||
8 | 3858.8308 | 3858.1415 | 3857.7672 | 3858.3303 | ||
Image2(000436) | 2 | 2213.5065 | 2213.1738 | 2213.3147 | 2213.1353 | |
4 | 3450.9044 | 3450.6474 | 3450.6818 | 3450.8937 | ||
6 | 4033.8449 | 4033.1927 | 4033.1099 | 4033.8446 | ||
8 | 4905.7727 | 4905.6214 | 4904.3492 | 4905.7649 | ||
Image3(001478) | 2 | 2451.9890 | 2451.7517 | 2451.1717 | 2451.9397 | |
4 | 3375.8902 | 3375.4263 | 3375.1152 | 3375.8437 | ||
6 | 3766.7624 | 3766.2709 | 3766.2389 | 3766.4151 | ||
8 | 3986.8089 | 3986.3177 | 3984.3164 | 3986.7295 | ||
Image4(003579) | 2 | 1765.9298 | 1765.3507 | 1765.1458 | 1765.4344 | |
4 | 2276.9954 | 2276.8173 | 2276.3680 | 2276.9576 | ||
6 | 3877.9674 | 3877.1473 | 3877.1218 | 3877.2627 | ||
8 | 5090.7653 | 5090.5032 | 5090.2623 | 5090.6338 | ||
Image5(004423) | 2 | 1721.8701 | 1721.1817 | 1721.1124 | 1721.2721 | |
4 | 2551.9400 | 2551.7442 | 2551.4594 | 2551.8431 | ||
6 | 2968.9682 | 2968.7638 | 2968.4520 | 2968.7339 | ||
8 | 3859.5790 | 3859.1403 | 3857.1300 | 3859.3798 | ||
Image6(006404) | 2 | 2972.7388 | 2972.2542 | 2972.1044 | 2972.4020 | |
4 | 3387.7543 | 3387.3168 | 3387.2231 | 3387.6870 | ||
6 | 4142.6126 | 4142.4051 | 4142.3022 | 4142.4612 | ||
8 | 5984.9055 | 5984.7659 | 5984.3470 | 5984.8045 |
Metric Name | Image | k | WOA | BOA | PSO | OURS |
---|---|---|---|---|---|---|
PSNR | Image7(001236) | 2 | 13.8293 | 14.5503 | 15.7167 | 15.7977 |
4 | 14.1970 | 14.6582 | 15.6621 | 15.6767 | ||
6 | 17.4146 | 17.5859 | 18.3812 | 20.5188 | ||
8 | 18.2980 | 18.1377 | 19.1016 | 21.6592 | ||
Image8(001876) | 2 | 13.4009 | 14.5790 | 14.8465 | 14.7751 | |
4 | 14.5690 | 15.6121 | 15.6524 | 16.4362 | ||
6 | 16.4996 | 16.7998 | 17.5997 | 19.7598 | ||
8 | 17.9384 | 18.6226 | 19.5498 | 21.5051 | ||
Image9(002036) | 2 | 13.5557 | 14.4696 | 14.6034 | 14.7418 | |
4 | 15.5611 | 15.1427 | 16.4177 | 16.3583 | ||
6 | 16.5306 | 17.3650 | 18.3565 | 19.1878 | ||
8 | 18.4281 | 18.5254 | 20.5951 | 22.6777 | ||
Image10(004231) | 2 | 13.6632 | 14.3337 | 15.2033 | 15.9469 | |
4 | 14.2989 | 14.6908 | 15.5551 | 15.2502 | ||
6 | 15.1205 | 16.5671 | 16.7517 | 17.4736 | ||
8 | 15.7529 | 16.7325 | 17.2486 | 18.2805 | ||
Image11(004610) | 2 | 14.7697 | 14.9273 | 15.6025 | 16.4122 | |
4 | 14.8004 | 15.4323 | 15.8120 | 16.9533 | ||
6 | 16.1080 | 17.5817 | 19.8235 | 20.4539 | ||
8 | 18.6965 | 19.8851 | 20.8712 | 21.7442 | ||
Image12(006946) | 2 | 11.6113 | 12.9387 | 13.8889 | 13.3067 | |
4 | 12.3074 | 12.4025 | 14.6690 | 14.1064 | ||
6 | 15.1121 | 15.2394 | 16.3323 | 17.7174 | ||
8 | 16.7195 | 16.8900 | 17.9451 | 18.3580 |
Metric Name | Image | k | WOA | BOA | PSO | OURS |
---|---|---|---|---|---|---|
SSIM | Image7(001236) | 2 | 0.5571 | 0.5861 | 0.5875 | 0.6273 |
4 | 0.6012 | 0.6302 | 0.6561 | 0.6567 | ||
6 | 0.6231 | 0.6519 | 0.7253 | 0.7461 | ||
8 | 0.6685 | 0.6918 | 0.7335 | 0.7824 | ||
Image8(001876) | 2 | 0.4474 | 0.4610 | 0.4619 | 0.4849 | |
4 | 0.4971 | 0.5300 | 0.5719 | 0.5826 | ||
6 | 0.5496 | 0.5826 | 0.6138 | 0.6611 | ||
8 | 0.6215 | 0.6291 | 0.6736 | 0.6884 | ||
Image9(002036) | 2 | 0.3660 | 0.3920 | 0.4136 | 0.4650 | |
4 | 0.3878 | 0.4012 | 0.4896 | 0.5109 | ||
6 | 0.4127 | 0.4322 | 0.5483 | 0.5705 | ||
8 | 0.4818 | 0.4845 | 0.5912 | 0.6318 | ||
Image10(004231) | 2 | 0.3309 | 0.3387 | 0.3567 | 0.3671 | |
4 | 0.3726 | 0.3862 | 0.4269 | 0.4262 | ||
6 | 0.4245 | 0.4527 | 0.4565 | 0.5049 | ||
8 | 0.4708 | 0.5428 | 0.5565 | 0.5778 | ||
Image11(004610) | 2 | 0.6188 | 0.6238 | 0.6454 | 0.6840 | |
4 | 0.6297 | 0.6632 | 0.6925 | 0.6918 | ||
6 | 0.7249 | 0.7650 | 0.7693 | 0.7891 | ||
8 | 0.7368 | 0.7728 | 0.7881 | 0.8017 | ||
Image12(006946) | 2 | 0.4310 | 0.4429 | 0.4523 | 0.5013 | |
4 | 0.4984 | 0.5204 | 0.5363 | 0.5699 | ||
6 | 0.5377 | 0.6239 | 0.6737 | 0.6875 | ||
8 | 0.6507 | 0.6918 | 0.7303 | 0.7471 |
Metric Name | Image | k | WOA | BOA | PSO | OURS |
---|---|---|---|---|---|---|
FSIM | Image7(001236) | 2 | 0.7066 | 0.7277 | 0.7510 | 0.7889 |
4 | 0.7397 | 0.7645 | 0.7916 | 0.8246 | ||
6 | 0.7560 | 0.8089 | 0.8433 | 0.8760 | ||
8 | 0.8030 | 0.8279 | 0.8660 | 0.8982 | ||
Image8(001876) | 2 | 0.6461 | 0.6516 | 0.6747 | 0.6850 | |
4 | 0.6642 | 0.6737 | 0.6927 | 0.7071 | ||
6 | 0.6823 | 0.6957 | 0.7182 | 0.7419 | ||
8 | 0.7128 | 0.7246 | 0.7584 | 0.8142 | ||
Image9(002036) | 2 | 0.6726 | 0.6949 | 0.7191 | 0.7347 | |
4 | 0.6938 | 0.7144 | 0.7341 | 0.7694 | ||
6 | 0.7220 | 0.7379 | 0.7550 | 0.7977 | ||
8 | 0.7421 | 0.7518 | 0.7796 | 0.8084 | ||
Image10(004231) | 2 | 0.6381 | 0.6679 | 0.6980 | 0.7130 | |
4 | 0.6526 | 0.6729 | 0.7111 | 0.7368 | ||
6 | 0.6932 | 0.7274 | 0.7510 | 0.7787 | ||
8 | 0.7349 | 0.7564 | 0.7860 | 0.8072 | ||
Image11(004610) | 2 | 0.7283 | 0.7484 | 0.7585 | 0.7467 | |
4 | 0.7379 | 0.7513 | 0.7685 | 0.7760 | ||
6 | 0.7451 | 0.7710 | 0.7819 | 0.8029 | ||
8 | 0.7670 | 0.7850 | 0.8129 | 0.8558 | ||
Image12(006946) | 2 | 0.7375 | 0.7582 | 0.7955 | 0.8250 | |
4 | 0.7541 | 0.7763 | 0.8152 | 0.8430 | ||
6 | 0.7796 | 0.8097 | 0.8421 | 0.8654 | ||
8 | 0.8016 | 0.8217 | 0.8427 | 0.8693 |
Metric Name | Image | k | WOA | BOA | PSO | OURS |
---|---|---|---|---|---|---|
Fitness | Image7(001236) | 2 | 2750.8992 | 2750.7616 | 2750.1240 | 2750.7641 |
4 | 3517.7437 | 3517.7256 | 3517.3212 | 3517.7290 | ||
6 | 4509.9853 | 4509.7814 | 4509.5764 | 4509.7829 | ||
8 | 6495.5661 | 6495.5018 | 6493.2953 | 6495.5538 | ||
Image8(001876) | 2 | 2338.4961 | 2338.3209 | 2338.2888 | 2338.4402 | |
4 | 3251.9846 | 3251.4460 | 3251.2548 | 3251.7075 | ||
6 | 3637.9811 | 3637.4199 | 3637.1219 | 3637.6122 | ||
8 | 4735.8050 | 4735.3475 | 4734.1491 | 4735.5701 | ||
Image9(002036) | 2 | 2777.9633 | 2777.8345 | 2777.1929 | 2777.9091 | |
4 | 3709.8962 | 3709.2028 | 3709.1977 | 3709.6104 | ||
6 | 4837.6270 | 4837.2012 | 4837.1285 | 4837.5268 | ||
8 | 5453.6888 | 5453.5749 | 5453.3442 | 5453.6073 | ||
Image10(004231) | 2 | 1699.8490 | 1699.3038 | 1699.1601 | 1699.7288 | |
4 | 2878.5953 | 2878.2350 | 2878.1299 | 2878.2976 | ||
6 | 3708.6870 | 3708.4114 | 3708.4016 | 3708.4181 | ||
8 | 4828.7905 | 4828.5773 | 4825.4886 | 4828.9096 | ||
Image11(004610) | 2 | 1343.9485 | 1343.6048 | 1343.4410 | 1343.7570 | |
4 | 2561.8768 | 2561.4219 | 2561.3565 | 2561.2494 | ||
6 | 2905.9755 | 2905.5645 | 2905.5418 | 2905.7108 | ||
8 | 4101.8497 | 4101.5807 | 4100.4235 | 4101.6487 | ||
Image12(006946) | 2 | 2200.6262 | 2200.1469 | 2200.1288 | 2200.5102 | |
4 | 3164.7962 | 3164.2352 | 3164.2936 | 3164.7918 | ||
6 | 3932.8209 | 3932.2591 | 3932.2245 | 3932.3805 | ||
8 | 4459.9945 | 4459.8215 | 4458.1837 | 4459.9166 |
Metric Name | k | WOA | BOA | PSO | OURS |
---|---|---|---|---|---|
PSNR | 2 | 13.2343 | 14.7236 | 14.9630 | 15.8237 |
4 | 14.5273 | 14.9263 | 15.4328 | 15.9417 | |
6 | 16.3862 | 16.9732 | 17.7237 | 19.6872 | |
8 | 18.4687 | 19.2433 | 20.2934 | 21.6278 | |
SSIM | 2 | 0.4327 | 0.4938 | 0.5019 | 0.5823 |
4 | 0.4825 | 0.5349 | 0.5835 | 0.6132 | |
6 | 0.5926 | 0.6419 | 0.6723 | 0.6835 | |
8 | 0.6324 | 0.6638 | 0.6924 | 0.7247 | |
FSIM | 2 | 0.6842 | 0.7154 | 0.7369 | 0.7437 |
4 | 0.7147 | 0.7519 | 0.7830 | 0.8039 | |
6 | 0.7422 | 0.7751 | 0.7984 | 0.8241 | |
8 | 0.7645 | 0.7957 | 0.8226 | 0.8469 | |
Running Tinme | 2 | 1.35 | 1.35 | 1.35 | 1.28 |
4 | 1.64 | 1.65 | 1.64 | 1.52 | |
6 | 2.85 | 3.12 | 2.97 | 2.25 | |
8 | 3.82 | 4.83 | 3.94 | 2.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Gao, Y.; Zhang, H.; Lei, Y.; Zhang, J. OTSU Multi-Threshold Image Segmentation Based on Improved Particle Swarm Algorithm. Appl. Sci. 2022, 12, 11514. https://doi.org/10.3390/app122211514
Zheng J, Gao Y, Zhang H, Lei Y, Zhang J. OTSU Multi-Threshold Image Segmentation Based on Improved Particle Swarm Algorithm. Applied Sciences. 2022; 12(22):11514. https://doi.org/10.3390/app122211514
Chicago/Turabian StyleZheng, Jianfeng, Yinchong Gao, Han Zhang, Yu Lei, and Ji Zhang. 2022. "OTSU Multi-Threshold Image Segmentation Based on Improved Particle Swarm Algorithm" Applied Sciences 12, no. 22: 11514. https://doi.org/10.3390/app122211514
APA StyleZheng, J., Gao, Y., Zhang, H., Lei, Y., & Zhang, J. (2022). OTSU Multi-Threshold Image Segmentation Based on Improved Particle Swarm Algorithm. Applied Sciences, 12(22), 11514. https://doi.org/10.3390/app122211514