Improved Combined Metric for Automatic Quality Assessment of Stitched Images
Abstract
1. Introduction
2. The Quality Evaluation of Stitched Images
2.1. The Verification Methodology of the Developed Metrics
2.2. The Overview of Quality Metrics
3. The Proposed Approach
- —differential entropy;
- —average local entropy for the stitched image;
- —differential variance of the local entropy;
- —variance of the edge-based structural index (var());
- —variance of the luminance and contrast index (var(K));
- —absolute difference of standard deviations.
4. The Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMD | Advanced Micro Devices |
AVC | Advanced Video Coding |
BRIEF | Binary Robust Independent Elementary Features |
BRISK | Binary Robust Invariant Scalable Keypoints |
CCSID | Color Correction-based Stitched Image Database |
CNN | Convolutional Neural Network |
CVIQD | Compressed VR Image Quality Database |
DoG | Difference of Gaussians |
FAST | Features from Accelerated Segment Test |
FREAK | Fast Retina Keypoint |
FR IQA | Full-Reference Image Quality Assessment |
FSIM | Feature Similarity |
GGD | Generalized Gaussian Distribution |
GMM | Gaussian Mixture Model |
HEVC | High-Efficiency Video Coding |
HMD | Head-Mounted Displays |
iCID | improved Color Image Difference |
ISIQA | Indian Institute of Science Stitched Image Quality Assessment (dataset) |
JPEG | Joint Photographic Experts Group |
KROCC | Kendall Rank Order Correlation Coefficient |
MIQM | Multi-view Image Quality Measure |
MOS | Mean Opinion Scores |
MVAQD | Multi-Distortion Visual Attention Quality Dataset |
NR IQA | No-Reference Image Quality Assessment |
NRQQA | No-Reference Quantitative Quality Assessment |
OIQA | Omnidirectional Image Quality Assessment |
OR | Outlier Ratio |
ORB | Oriented FAST and Rotated BRIEF |
PLCC | Pearson’s Linear Correlation Coefficient |
RAM | Random Access Memory |
RANSAC | RANdom SAmpling Consensus |
RMSE | Root Mean Squared Error |
ROI | region of interest |
SIFT | Scale Invariant Feature Transform |
SIQE | Stitched Image Quality Evaluation |
SROCC | Spearman Rank Order Correlation Coefficient |
SSIM | Structural Similarity |
SURF | Speeded-Up Robust Features |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
UAV | unmanned aerial vehicle |
VQEG | Video Quality Experts Group |
VSLAM | Visual Simultaneous Localization and Mapping |
VR | Virtual Reality |
References
- Liu, L.; Guo, L.; Dong, N.; Tian, W.; Li, C.; Zhang, F. The Research and Application of Image Stitching in the Robot Target Recognition. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2012; pp. 105–111. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Lu, G.; Wu, X.; Zhang, Q. Linear Protection Grid Optimized Image Stitching for Mobile Robots. In Proceedings of the 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR), Irkutsk, Russia, 4–9 August 2019. [Google Scholar] [CrossRef]
- Ulrich, M.; Forstner, A.; Reinhart, G. High-accuracy 3D image stitching for robot-based inspection systems. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015. [Google Scholar] [CrossRef]
- Schlagenhauf, T.; Brander, T.; Fleischer, J. A stitching algorithm for automated surface inspection of rotationally symmetric components. CIRP J. Manuf. Sci. Technol. 2021, 35, 169–177. [Google Scholar] [CrossRef]
- Xie, R.; Yao, J.; Liu, K.; Lu, X.; Liu, Y.; Xia, M.; Zeng, Q. Automatic multi-image stitching for concrete bridge inspection by combining point and line features. Autom. Constr. 2018, 90, 265–280. [Google Scholar] [CrossRef]
- Samsudin, S.; Adwan, S.; Arof, H.; Mokhtar, N.; Ibrahim, F. Development of Automated Image Stitching System for Radiographic Images. J. Digit. Imaging 2012, 26, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Gool, L.V. SURF: Speeded Up Robust Features. In Computer Vision—ECCV 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417. [Google Scholar] [CrossRef]
- Rosten, E.; Drummond, T. Fusing points and lines for high performance tracking. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 17–21 October 2005; Volume 1. [Google Scholar] [CrossRef]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features. In Computer Vision—ECCV 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 778–792. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011. [Google Scholar] [CrossRef]
- Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary Robust invariant scalable keypoints. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011. [Google Scholar] [CrossRef]
- Alahi, A.; Ortiz, R.; Vandergheynst, P. FREAK: Fast Retina Keypoint. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012. [Google Scholar] [CrossRef]
- Huang, W.; Han, X. An Improved RANSAC Algorithm of Color Image Stitching. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–28. [Google Scholar] [CrossRef]
- Guo, L.S.; Dong, N.Q.; Tian, W.; Li, C.X.; Zhang, F.Z. The Application of Image Stitching in the Robot Target Recognition. Adv. Mater. Res. 2011, 327, 149–152. [Google Scholar] [CrossRef]
- Dong, Y.; Pei, M.; Zhang, L.; Xu, B.; Wu, Y.; Jia, Y. Stitching Videos from a Fisheye Lens Camera and a Wide-Angle Lens Camera for Telepresence Robots. Int. J. Soc. Robot. 2021, 14, 733–745. [Google Scholar] [CrossRef]
- Lee, W.T.; Chen, H.I.; Chen, M.S.; Shen, I.C.; Chen, B.Y. High-resolution 360 Video Foveated Stitching for Real-time VR. Comput. Graph. Forum 2017, 36, 115–123. [Google Scholar] [CrossRef]
- Limonov, A.; Yu, X.; Juan, L.; Lei, C.; Jian, Y. Stereoscopic realtime 360-degree video stitching. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018. [Google Scholar] [CrossRef]
- Meng, X.; Wang, W.; Leong, B. SkyStitch: A Cooperative Multi-UAV-based Real-time Video Surveillance System with Stitching. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015. [Google Scholar] [CrossRef]
- Madhusudana, P.C.; Soundararajan, R. Subjective and Objective Quality Assessment of Stitched Images for Virtual Reality. IEEE Trans. Image Process. 2019, 28, 5620–5635. [Google Scholar] [CrossRef]
- Hou, J.; Lin, W.; Zhao, B. Content-Dependency Reduction With Multi-Task Learning In Blind Stitched Panoramic Image Quality Assessment. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020. [Google Scholar] [CrossRef]
- Duan, H.; Zhai, G.; Min, X.; Zhu, Y.; Fang, Y.; Yang, X. Perceptual Quality Assessment of Omnidirectional Images. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018. [Google Scholar] [CrossRef]
- Wang, X.; Chai, X.; Shao, F. Quality assessment for color correction-based stitched images via bi-directional matching. J. Vis. Commun. Image Represent. 2021, 75, 103051. [Google Scholar] [CrossRef]
- Cheung, G.; Yang, L.; Tan, Z.; Huang, Z. A Content-Aware Metric for Stitched Panoramic Image Quality Assessment. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Sun, W.; Gu, K.; Ma, S.; Zhu, W.; Liu, N.; Zhai, G. A Large-Scale Compressed 360-Degree Spherical Image Database: From Subjective Quality Evaluation to Objective Model Comparison. In Proceedings of the 2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP), Vancouver, BC, Canada, 29–31 August 2018. [Google Scholar] [CrossRef]
- Zheng, X.; Jiang, G.; Yu, M.; Jiang, H. Segmented Spherical Projection-Based Blind Omnidirectional Image Quality Assessment. IEEE Access 2020, 8, 31647–31659. [Google Scholar] [CrossRef]
- VQEG. Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment Phase II; Technical Report; Video Quality Experts Group, 2003; Available online: https://vqeg.org/VQEGSharedFiles/Publications/Validation_Tests/FRTV_Phase2/FRTV_Phase2_Final_Report.pdf (accessed on 10 July 2022).
- Sheikh, H.; Sabir, M.; Bovik, A. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef]
- Solh, M.; AlRegib, G. MIQM: A novel Multi-view Images Quality Measure. In Proceedings of the 2009 International Workshop on Quality of Multimedia Experience, San Diego, CA, USA, 29–31 July 2009. [Google Scholar] [CrossRef]
- Solh, M.; AlRegib, G. MIQM: A Multicamera Image Quality Measure. IEEE Trans. Image Process. 2012, 21, 3902–3914. [Google Scholar] [CrossRef] [PubMed]
- Okarma, K.; Chlewicki, W.; Kopytek, M.; Marciniak, B.; Lukin, V. Entropy-Based Combined Metric for Automatic Objective Quality Assessment of Stitched Panoramic Images. Entropy 2021, 23, 1525. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, H.; Khan, M.; Hafiz, R.; Cho, Y.; Cha, J. Quantitative quality assessment of stitched panoramic images. IET Image Process. 2012, 6, 1348–1358. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, F.; Colombo, C. Dissecting and Reassembling Color Correction Algorithms for Image Stitching. IEEE Trans. Image Process. 2018, 27, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Preiss, J.; Fernandes, F.; Urban, P. Color-Image Quality Assessment: From Prediction to Optimization. IEEE Trans. Image Process. 2014, 23, 1366–1378. [Google Scholar] [CrossRef]
- Xu, W.; Mulligan, J. Performance evaluation of color correction approaches for automatic multi-view image and video stitching. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010. [Google Scholar] [CrossRef]
- Yu, S.; Li, T.; Xu, X.; Tao, H.; Yu, L.; Wang, Y. NRQQA: A No-Reference Quantitative Quality Assessment Method for Stitched Images. In Proceedings of the ACM Multimedia Asia, Beijing, China, 15–18 December 2019; pp. 1–6, Article No. 14. [Google Scholar] [CrossRef]
- Okarma, K. Combined image similarity index. Optical Rev. 2012, 19, 349–354. [Google Scholar] [CrossRef]
- Okarma, K.; Lech, P.; Lukin, V.V. Combined Full-Reference Image Quality Metrics for Objective Assessment of Multiply Distorted Images. Electronics 2021, 10, 2256. [Google Scholar] [CrossRef]
- Oszust, M. Decision Fusion for Image Quality Assessment using an Optimization Approach. IEEE Signal Process. Lett. 2016, 23, 65–69. [Google Scholar] [CrossRef]
- Ullah, H.; Afzal, S.; Khan, I.U. Perceptual Quality Assessment of Panoramic Stitched Contents for Immersive Applications: A Prospective Survey. Virtual Real. Intell. Hardw. 2022, 4, 223–246. [Google Scholar] [CrossRef]
- Okarma, K.; Kopytek, M. Application of Image Entropy Analysis for the Quality Assessment of Stitched Images. In Progress in Image Processing, Pattern Recognition and Communication Systems; Choraś, M., Choraś, R.S., Kurzyński, M., Trajdos, P., Pejaś, J., Hyla, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 125–132. [Google Scholar] [CrossRef]
- Liu, Z.; Mo, Z. Combining Local and Global Features for Quality Assessment of Stitched Images in Virtual Reality. In Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City, Guangzhou, China, 22–25 December 2021. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
Metric | Correlation with MOS | ||
---|---|---|---|
PLCC | SROCC | KROCC | |
Results provided by other researchers for 80% training and 20% testing sets | |||
SIQE reported in [20] | 0.8395 | 0.8318 | - |
SIQE (median) reported in [44] | 0.8030 | 0.7820 | - |
Liu and Mo [44] | 0.8432 | 0.8013 | - |
Results obtained for the whole ISIQA database | |||
SIQE [20] | 0.7488 | 0.7057 | 0.5308 |
EntSIQE [43] | 0.8012 | 0.7920 | 0.5971 |
EntSIQE [43] | 0.8101 | 0.7945 | 0.5990 |
EntSIQE [31] | 0.8338 | 0.8338 | 0.6418 |
EntSIQE [31] | 0.8337 | 0.8341 | 0.6432 |
CombSIQE (proposed) | 0.8684 | 0.8665 | 0.6810 |
Metric | Correlation with MOS | ||
---|---|---|---|
PLCC | SROCC | KROCC | |
CombSIQE (proposed) | 0.8684 | 0.8665 | 0.6810 |
only weighted sum | 0.8387 | 0.8363 | 0.6439 |
only weighted product | 0.8362 | 0.8338 | 0.6431 |
without (SIQE) | 0.3963 | 0.4177 | 0.2862 |
without | 0.8671 | 0.8672 | 0.6828 |
without | 0.8390 | 0.8350 | 0.6455 |
without | 0.8668 | 0.8623 | 0.6773 |
without | 0.8611 | 0.8591 | 0.6730 |
without | 0.8655 | 0.8632 | 0.6773 |
without | 0.8611 | 0.8590 | 0.6721 |
without | 0.8523 | 0.8519 | 0.6610 |
without | 0.8676 | 0.8681 | 0.6837 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okarma, K.; Kopytek, M. Improved Combined Metric for Automatic Quality Assessment of Stitched Images. Appl. Sci. 2022, 12, 10284. https://doi.org/10.3390/app122010284
Okarma K, Kopytek M. Improved Combined Metric for Automatic Quality Assessment of Stitched Images. Applied Sciences. 2022; 12(20):10284. https://doi.org/10.3390/app122010284
Chicago/Turabian StyleOkarma, Krzysztof, and Mateusz Kopytek. 2022. "Improved Combined Metric for Automatic Quality Assessment of Stitched Images" Applied Sciences 12, no. 20: 10284. https://doi.org/10.3390/app122010284
APA StyleOkarma, K., & Kopytek, M. (2022). Improved Combined Metric for Automatic Quality Assessment of Stitched Images. Applied Sciences, 12(20), 10284. https://doi.org/10.3390/app122010284