Monte Carlo Simulation with Experimental Research about Underwater Transmission and Imaging of Laser
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- The photon packet returns to the detector within the field of view;
- (2)
- The photon packet reaches the target plane but does not hit the target area;
- (3)
- The photon packet energy is less than the threshold, namely, it is lost during the transmission process;
- (4)
- The number of photon packet scattering exceeds the preset maximum number.
3. Results
3.1. Simulation
3.1.1. Unidirectional Transmission
3.1.2. Bidirectional Transmission
3.1.3. Optimization of IMC Method
3.2. Experimental Setup
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, H.; Li, Y.; Zhang, Y.; Chen, M.; Serikawa, S.; Kim, H. Underwater optical image processing: A comprehensive review. Mob. Netw. Appl. 2017, 22, 1204–1211. [Google Scholar]
- Cong, Y.; Gu, C.; Zhang, T.; Gao, Y. Underwater robot sensing technology: A survey. Fundam. Res. 2021, 1, 337–345. [Google Scholar] [CrossRef]
- Menna, F.; Agrafiotis, P.; Georgopoulos, A. State of the art and applications in archaeological underwater 3D recording and mapping. J. Cult. Herit. 2018, 33, 231–248. [Google Scholar] [CrossRef]
- Li, K.P.; He, Y.; Ma, J.; Jiang, Z.Y.; Hou, C.H.; Chen, W.B.; Zhu, X.L.; Chen, P.; Tang, J.W.; Wu, S.H.; et al. A Dual-Wavelength Ocean Lidar for Vertical Profiling of Oceanic Backscatter and Attenuation. Remote Sens. 2020, 12, 2844. [Google Scholar] [CrossRef]
- Pearson, G.N. A High-Pulse-Repetition-Frequency CO2 Doppler Lidar for Atmospheric Monitoring. Rev. Sci. Instrum. 1993, 64, 1155–1157. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Churnside, J.H. Review of profiling oceanographic lidar. Opt. Eng. 2014, 53, 051405. [Google Scholar] [CrossRef]
- Harrap, R.; Lato, M. An overview of LIDAR: Collection to application. NGI Publ. 2010, 2, 1–9. [Google Scholar]
- Li, Z.-M.; Zhou, H.; Li, Z.-Y.; Yan, Z.-Q.; Hu, C.-Q.; Gao, J.; Wu, S.-B.; Yin, S.-Y.; Jin, X.-M. Thresholded single-photon underwater imaging and detection. Opt. Express 2021, 29, 28124–28133. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, C.; Hyyppä, J.; Qiu, S.; Wang, Z.; Tian, M.; Li, W.; Puttonen, E.; Zhou, H.; Feng, Z. Feasibility study of ore classification using active hyperspectral LiDAR. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1785–1789. [Google Scholar] [CrossRef]
- Kong, Z.; Yin, Z.; Cheng, Y.; Li, Y.; Zhang, Z.; Mei, L. Modeling and evaluation of the systematic errors for the polarization-sensitive imaging lidar technique. Remote Sens. 2020, 12, 3309. [Google Scholar] [CrossRef]
- Andersson, P. Long-range three-dimensional imaging using range-gated laser radar images. Opt. Eng. 2006, 45, 034301. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, G.; Zhang, Y.; Cui, Z.; Bi, Z. A range-gated imaging flash Lidar based on the adjacent frame difference method. Opt. Lasers Eng. 2021, 141, 106558. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Zhang, Y.; Sun, L.; Lei, P.; Yang, Y.; Chen, J.; He, J.; Zhou, Y. Range-intensity-profile prior dehazing method for underwater range-gated imaging. Opt. Express 2021, 29, 7630–7640. [Google Scholar] [CrossRef]
- Jaruwatanadilok, S. Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory. IEEE J. Sel. Areas Commun. 2008, 26, 1620–1627. [Google Scholar] [CrossRef]
- Duntley, S.Q. Light in the sea. JOSA 1963, 53, 214–233. [Google Scholar] [CrossRef]
- Paxton, P.; Curran, P.J.; Bollen, K.A.; Kirby, J.; Chen, F. Monte Carlo experiments: Design and implementation. Struct. Equ. Model. 2001, 8, 287–312. [Google Scholar] [CrossRef]
- Wild, W.J.; Buhay, H. Thin-film multilayer design optimization using a Monte Carlo approach. Opt. Lett. 1986, 11, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Feygels, V.I.; Wright, C.W.; Kopilevich, Y.I.; Surkov, A.I. Narrow-Field-of-View Bathymetrical Lidar: Theory and Field Test. In Ocean Remote Sensing and Imaging II; SPIE: Bellingham, WA, USA, 2003; pp. 1–11. [Google Scholar]
- Anuff, A.; Liou, M.L. An Approach to Calculating Interchannel Distortion of Linearly Filtered Angle-Modulated Signals Using a Hybrid Computer. Proc. IEEE 1969, 57, 736–737. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Y. General stochastic channel model and performance evaluation for underwater wireless optical links. IEEE Trans. Wirel. Commun. 2015, 15, 1162–1173. [Google Scholar] [CrossRef]
- Sahu, S.K.; Shanmugam, P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system. Opt. Commun. 2018, 408, 3–14. [Google Scholar] [CrossRef]
- Yuan, R.; Ma, J.; Su, P.; Dong, Y.; Cheng, J. Monte-Carlo integration models for multiple scattering based optical wireless communication. IEEE Trans. Commun. 2019, 68, 334–348. [Google Scholar] [CrossRef]
- Wang, L.H.; Jacques, S.L.; Zheng, L.Q. Mcml-Monte-Carlo Modeling of Light Transport in Multilayered Tissues. Comput. Meth. Programs Biomed. 1995, 47, 131–146. [Google Scholar] [CrossRef]
- Xu, M. Coherent backscattering of polarized light for tissue diagnostics: An Electric field Monte Carlo study. In Proceedings of the Conference on Optical Interactions with Tissue and Cells XIX, San Jose, CA, USA, 21–23 January 2008. [Google Scholar]
- Zhu, X.W.; Lu, L.Y.; Cao, Z.L.; Zeng, B.X.; Xu, M. Transmission matrix-based Electric field Monte Carlo study and experimental validation of the propagation characteristics of Bessel beams in turbid media. Opt. Lett. 2018, 43, 4835–4838. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, B.; Tian, Y.; Zeng, Y. Crop canopy BRDF simulation and analysis using Monte Carlo method. Trans. Chin. Soc. Agric. Eng. 2006, 22, 1–6. [Google Scholar]
- Wang, J.; Xu, W.; Zhou, G.; Niu, C. Wetland Aquatic Vegetation Canopy BRDF Monte Carlo Model Establishing Method, Involves Determining Track Photon Value, and Performing Aquatic Vegetation total Weight Calculating Process Corresponding to Track Photon Value. Chinese. Invention Patent No. 201510045270.9, 10 June 2015. [Google Scholar]
- Lee, K.-S.; Seo, M.; Choi, S.; Jin, D.-H.; Jung, D.; Sim, S.; Han, K.-S. Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method. Korean J. Remote Sens. 2021, 37, 161–167. [Google Scholar]
- Kallel, A. Leaf polarized polarized BRDF simulation based on Monte Carlo 3-D vector RT modeling. J. Quant. Spectrosc. Radiat. Transf. 2018, 221, 202–224. [Google Scholar] [CrossRef]
- Hulst, H.C.; van de Hulst, H.C. Light Scattering by Small Particles; Courier Corporation: Chelmsford, MA, USA, 1981. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Torrance, K.E.; Sparrow, E.M. Theory for Off-Specular Reflection From Roughened Surfaces. J. Opt. Soc. Am. 1967, 57, 1105–1114. [Google Scholar] [CrossRef]
- Cook, R.L.; Torrance, K.E. A reflectance model for computer graphics. ACM Trans. Graph. (ToG) 1982, 1, 7–24. [Google Scholar] [CrossRef]
- Hyde Iv, M.W.; Schmidt, J.D.; Havrilla, M.J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces. Opt. Express 2009, 17, 22138–22153. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Q.; Zhang, Y.; Han, F. Image-restoration algorithm based on an underwater polarization imaging visualization model. J. Opt. Soc. Am. A 2022, 39, 855–865. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Q. Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 2011, 20, 1185–1198. [Google Scholar] [CrossRef]
- Solonenko, M.G.; Mobley, C.D. Inherent optical properties of Jerlov water types. Appl. Opt. 2015, 54, 5392–5401. [Google Scholar] [CrossRef] [PubMed]
- Henyey, L.G.; Greenstein, J.L. Diffuse radiation in the galaxy. Astrophys. J. 1941, 93, 70–83. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, W.; Cao, W.; Wang, G.; Deng, L.; Xu, W.; Xu, Z.; Li, C.; Cai, J. Characterization of particle size distribution in the South China Sea basin during summer 2016. J. Trop. Oceanogr. 2018, 37, 74–85. [Google Scholar]
- Chen, P.; Pan, D.; Mao, Z.; Liu, H. Semi-Analytic Monte Carlo Model for Oceanographic Lidar Systems: Lookup Table Method Used for Randomly Choosing Scattering Angles. Appl. Sci. 2018, 9, 48. [Google Scholar] [CrossRef] [Green Version]
Target | Source | SSIM | MSSIM | PSNR/dB |
---|---|---|---|---|
Diver | Unoptimized simulation | 0.494 | 0.999 | 29.71 |
Optimized simulation | 0.527 | 0.999 | 30.05 | |
Experiment | 0.534 | 0.992 | 27.04 | |
Double slit | Unoptimized simulation | 0.503 | 0.999 | 23.72 |
Optimized simulation | 0.53 | 0.998 | 24.44 | |
Experiment | 0.553 | 0.993 | 22.87 |
Target | Source | SSIM | MSSIM | PSNR/dB |
---|---|---|---|---|
Double Slit * | Simulation | 0.318 | 0.998 | 15.31 |
Experiment | 0.367 | 0.989 | 14.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; He, Y.; Chen, Y.; Chen, W.; Chen, Q.; Huang, Y. Monte Carlo Simulation with Experimental Research about Underwater Transmission and Imaging of Laser. Appl. Sci. 2022, 12, 8959. https://doi.org/10.3390/app12188959
Guo S, He Y, Chen Y, Chen W, Chen Q, Huang Y. Monte Carlo Simulation with Experimental Research about Underwater Transmission and Imaging of Laser. Applied Sciences. 2022; 12(18):8959. https://doi.org/10.3390/app12188959
Chicago/Turabian StyleGuo, Shouchuan, Yan He, Yongqiang Chen, Weibiao Chen, Qi Chen, and Yifan Huang. 2022. "Monte Carlo Simulation with Experimental Research about Underwater Transmission and Imaging of Laser" Applied Sciences 12, no. 18: 8959. https://doi.org/10.3390/app12188959
APA StyleGuo, S., He, Y., Chen, Y., Chen, W., Chen, Q., & Huang, Y. (2022). Monte Carlo Simulation with Experimental Research about Underwater Transmission and Imaging of Laser. Applied Sciences, 12(18), 8959. https://doi.org/10.3390/app12188959