TiO2–Fe3O4 Composite Systems—Preparation, Physicochemical Characterization, and an Attempt to Explain the Limitations That Arise in Catalytic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2–Fe3O4
2.2. Characterization of TiO2–Fe3O4
2.2.1. Morphological Studies with Electron Microscopy
2.2.2. X-ray Powder Diffractometry
2.2.3. Thermogravimetric Analysis
2.2.4. Nanoparticle Tracking Analysis
2.3. Measurements of Photocatalytic Activity
2.4. LC-MS/MS: Sample Preparation and Analysis
2.5. Acute Toxicity Assay
3. Results and Discussion
3.1. Preparation and Characterization of the Material
3.1.1. Preparation of TiO2–Fe3O4 Composite
3.1.2. Morphological Studies
3.1.3. Hydrodynamic Size
3.1.4. XRPD
3.1.5. Thermogravimetric Analysis
3.2. Photocatalytic Activity of TiO2–Fe3O4 Composite systems
3.3. Acute Toxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jovanović, B. Critical Review of Public Health Regulations of Titanium Dioxide, a Human Food Additive. Integr. Environ. Assess. Manag. 2015, 11, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Musial, J.; Krakowiak, R.; Mlynarczyk, D.T.; Goslinski, T.; Stanisz, B.J. Titanium Dioxide Nanoparticles in Food and Personal Care Products—What Do We Know about Their Safety? Nanomaterials 2020, 10, 1110. [Google Scholar] [CrossRef] [PubMed]
- Krakowiak, R.; Musial, J.; Bakun, P.; Spychała, M.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Koczorowski, T.; Sobotta, L.; Stanisz, B.; Goslinski, T. Titanium Dioxide-Based Photocatalysts for Degradation of Emerging Contaminants Including Pharmaceutical Pollutants. Appl. Sci. 2021, 11, 8674. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Ecotoxic Pharmaceuticals, Personal Care Products, and Other Emerging Contaminants: A Review of Environmental, Receptor-Mediated, Developmental, and Epigenetic Toxicity with Discussion of Proposed Toxicity to Humans. Crit. Rev. Environ. Sci. Technol. 2016, 46, 336–381. [Google Scholar] [CrossRef]
- Sarma, H.; Lee, W.-Y.; Domínguez, D.C. Emerging Contaminants in the Environment: Challenges and Sustainable Practices; Elsevier: Amsterdam, The Netherlands, 2022; p. 687. [Google Scholar]
- Davit, P.; Martra, G.; Coluccia, S. Photocatalytic Degradation of Organic Compounds on TiO2 Powders FT-IR Investigation of Surface Reactivity and Mechanistic Aspects. J. Jpn. Pet. Inst. 2004, 47, 359–376. [Google Scholar] [CrossRef]
- Chen, C.; Lu, C.; Chung, Y.; Jan, J. UV Light Induced Photodegradation of Malachite Green on TiO2 Nanoparticles. J. Haz. Mat. 2007, 141, 520–528. [Google Scholar] [CrossRef]
- Liu, Y.; Gan, X.; Zhou, B.; Xiong, B.; Li, J.; Dong, C.; Bai, J.; Cai, W. Photoelectrocatalytic Degradation of Tetracycline by Highly Effective TiO2 Nanopore Arrays Electrode. J. Haz. Mat. 2009, 171, 678–683. [Google Scholar] [CrossRef]
- Ganapathe, L.S.; Mohamed, M.A.; Mohamad Yunus, R.; Berhanuddin, D.D. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry 2020, 6, 68. [Google Scholar] [CrossRef]
- Zhang, H.; He, X.; Zhao, W.; Peng, Y.; Sun, D.; Li, H.; Wang, X. Preparation of Fe3O4/TiO2 Magnetic Mesoporous Composites for Photocatalytic Degradation of Organic Pollutants. Water Sci. Technol. 2017, 75, 1523–1528. [Google Scholar] [CrossRef]
- Vinosel, V.M.; Anand, S.; Janifer, M.A.; Pauline, S.; Dhanavel, S.; Praveena, P.; Stephen, A. Preparation and Performance of Fe3O4/TiO2 Nanocomposite with Enhanced Photo-Fenton Activity for Photocatalysis by Facile Hydrothermal Method. Appl. Phys. A 2019, 125, 319. [Google Scholar] [CrossRef]
- Bobori, D.; Dimitriadi, A.; Karasiali, S.; Tsoumaki-Tsouroufli, P.; Mastora, M.; Kastrinaki, G.; Feidantsis, K.; Printzi, A.; Koumoundouros, G.; Kaloyianni, M. Common Mechanisms Activated in the Tissues of Aquatic and Terrestrial Animal Models after TiO2 Nanoparticles Exposure. Environ. Int. 2020, 138, 105611. [Google Scholar] [CrossRef]
- Manafi, S.; Rahimipour, M.R.; Mobasherpour, I.; Soltanmoradi, A. The Synthesis of Peculiar Structure of Springlike Multiwall Carbon Nanofibers/Nanotubes via Mechanothermal Method. J. Nanomater. 2012, 2012, 803546. [Google Scholar] [CrossRef]
- Soares, O.S.G.P.; Rocha, R.P.; Órfão, J.J.M.; Pereira, M.F.R.; Figueiredo, J.L. Mechanothermal Approach for N-, S-, P-, and B-Doping of Carbon Nanotubes: Methodology and Catalytic Performance in Wet Air Oxidation. C 2019, 5, 30. [Google Scholar] [CrossRef]
- Thomas Johnson, B. Microtox® Acute Toxicity Test. In Small-Scale Freshwater Toxicity Investigations: Volume 1-Toxicity Test Methods; Blaise, C., Férard, J.-F., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 69–105. ISBN 978-1-4020-3119-9. [Google Scholar]
- Recillas, S.; García, A.; González, E.; Casals, E.; Puntes, V.; Sánchez, A.; Font, X. Use of CeO2, TiO2 and Fe3O4 Nanoparticles for the Removal of Lead from Water: Toxicity of Nanoparticles and Derived Compounds. Desalination 2011, 277, 213–220. [Google Scholar] [CrossRef]
- Dozzi, M.V.; Montalbano, M.; Marra, G.; Mino, L.; Selli, E. Effects of Anatase TiO2 Morphology and Surface Fluorination on Environmentally Relevant Photocatalytic Reduction and Oxidation Reactions. Mater. Today Chem. 2021, 22, 100624. [Google Scholar] [CrossRef]
- He, J.; Du, Y.; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24, 2996. [Google Scholar] [CrossRef]
- Lemine, O.M.; Madkhali, N.; Alshammari, M.; Algessair, S.; Gismelseed, A.; El Mir, L.; Hjiri, M.; Yousif, A.A.; El-Boubbou, K. Maghemite (γ-Fe2O3) and γ-Fe2O3-TiO2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency. Materials 2021, 14, 5691. [Google Scholar] [CrossRef]
- Li, X.W.; Song, R.G.; Jiang, Y.; Wang, C.; Jiang, D. Surface Modification of TiO2 Nanoparticles and Its Effect on the Properties of Fluoropolymer/TiO2 Nanocomposite Coatings. Appl. Surf. Sci. 2013, 276, 761–768. [Google Scholar] [CrossRef]
- Stoia, M.; Istratie, R.; Păcurariu, C. Investigation of Magnetite Nanoparticles Stability in Air by Thermal Analysis and FTIR Spectroscopy. J. Therm. Anal. Calorim. 2016, 125, 1185–1198. [Google Scholar] [CrossRef]
- Bagbi, Y.; Sarswat, A.; Mohan, D.; Pandey, A.; Solanki, P.R. Lead and Chromium Adsorption from Water Using L-Cysteine Functionalized Magnetite (Fe3O4) Nanoparticles. Sci. Rep. 2017, 7, 7672. [Google Scholar] [CrossRef] [Green Version]
- Kouotou, P.M.; Kasmi, A.E.; Wu, L.-N.; Waqas, M.; Tian, Z.-Y. Particle Size-Band Gap Energy-Catalytic Properties Relationship of PSE-CVD-Derived Fe3O4 Thin Films. J. Taiwan Inst. Chem. Eng. 2018, 93, 427–435. [Google Scholar] [CrossRef]
- Li, Z.; Chanéac, C.; Berger, G.; Delaunay, S.; Graff, A.; Lefèvre, G. Mechanism and Kinetics of Magnetite Oxidation under Hydrothermal Conditions. RSC Adv. 2019, 9, 33633–33642. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Choung, S.-J.; Park, J.Y. Photocatalytic Performance of Nanometer-Sized FexOy/TiO2 Particle Synthesized by Hydrothermal Method. Catal. Today 2003, 87, 87–97. [Google Scholar] [CrossRef]
- Rodríguez, E.; Fernández, G.; Ledesma, B.; Álvarez, P.; Beltrán, F.J. Photocatalytic Degradation of Organics in Water in the Presence of Iron Oxides: Influence of Carboxylic Acids. Appl. Catal. B Environ. 2009, 92, 240–249. [Google Scholar] [CrossRef]
- Yu, X.; Liu, S.; Yu, J. Superparamagnetic γ-Fe2O3@SiO2@TiO2 Composite Microspheres with Superior Photocatalytic Properties. Appl. Catal. B Environ. 2011, 104, 12–20. [Google Scholar] [CrossRef]
- Linnik, O.; Chorna, N.; Smirnova, N.; Eremenko, A.; Korduban, O.; Stefan, N.; Ristoscu, C.; Socol, G.; Miroiu, M.; Mihailescu, I.N. Pulsed Laser-Deposited TiO2-Based Films: Synthesis, Electronic Structure and Photocatalytic Activity. In Semiconductor Photocatalysis-Materials, Mechanisms and Applications; Cao, W., Ed.; InTech: London, UK, 2016; ISBN 978-953-51-2484-9. [Google Scholar]
- Linnik, O.; Popescu-Pelin, G.; Stefan, N.; Chorna, N.; Smirnova, N.; Mihailescu, C.N.; Ristoscu, C.; Mihailescu, I.N. Investigation of Nitrogen and Iron Co-Doped TiO2 Films Synthesized in N2/CH4 via Pulsed Laser Deposition Technique. Appl. Nanosci. 2020, 10, 2569–2579. [Google Scholar] [CrossRef]
- Mercyrani, B.; Hernandez-Maya, R.; Solís-López, M. Photocatalytic Degradation of Orange G Using TiO2/Fe3O4 Nanocomposites. J. Mater. Sci. Mater. Electron. 2018, 29, 15436–15444. [Google Scholar] [CrossRef]
- Alvarez, P.M.; Jaramillo, J.; López-Piñero, F.; Plucinski, P.K. Preparation and Characterization of Magnetic TiO2 Nanoparticles and Their Utilization for the Degradation of Emerging Pollutants in Water. Appl. Catal. B Environ. 2010, 100, 338–345. [Google Scholar] [CrossRef]
- Lei, L.; Aoyama, I. Effect-Directed Investigation and Interactive Effect of Organic Toxicants in Landfill Leachates Combining Microtox Test with RP-HPLC Fractionation and GC/MS Analysis. Ecotoxicology 2010, 19, 1268–1276. [Google Scholar] [CrossRef]
Material | Particle Size (Mean ± SD) | PDI a |
---|---|---|
TiO2 | 190.9 ± 103.4 nm | 0.293 |
TiO2–Fe3O4 | 369.5 ± 232.9 nm | 0.397 |
Material | First Stage | Second Stage | Residue | ||||
---|---|---|---|---|---|---|---|
Tp (°C) | Tk (°C) | ∆m (%) | Tp (°C) | Tk (°C) | ∆m (%) | (%) | |
TiO2 | 26 | 384 | 2.51 | 97.49 | |||
TiO2–Fe3O4 | 26 | 187 | 2.24 | 188 | 635 | 1.45 | 96.31 |
Material a | Method of Preparation | Photocatalytic Substrate | Irradiation Wavelength | Reaction Time | TiO2 Photoefficiency b | TiO2–Fe3O4 Photoefficiency b | Reference |
---|---|---|---|---|---|---|---|
TiO2–Fe3O4 | Mechano-thermal | Ibuprofen | 365, 523 nm | 2 h | 44%, <5% | 19%, <5% | This study |
FexOy/TiO2 | Impregnation | Chloroform | 365 nm | 10 h | ~60% | ~30% | [25] |
Fe3O4/TiO2 | Not indicated | BPA | 365 nm | 2 h | 56% | 50% | [26] |
Fe3O4@TiO2 | Vapor-thermal | Rhodamine B | UV | 1 h | ~85% | ~35% | [27] |
FeTiNC | Pulsed laser deposition | Cr(VI) ions | UV, Vis > 380 nm | 2 h | 24%, 3% [28] | 69%, 19% | [29] |
TiO2/Fe3O4 | Ultrasonic | Orange G | Vis | 2 h | ~20% | ~60% | [30] |
TiO2/Fe3O4 | Ultrasonic | Paracetamol | 254 nm | 5 h | ~95% | ~89% | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krakowiak, R.; Frankowski, R.; Mylkie, K.; Mlynarczyk, D.T.; Ziegler-Borowska, M.; Zgoła-Grześkowiak, A.; Goslinski, T. TiO2–Fe3O4 Composite Systems—Preparation, Physicochemical Characterization, and an Attempt to Explain the Limitations That Arise in Catalytic Applications. Appl. Sci. 2022, 12, 8826. https://doi.org/10.3390/app12178826
Krakowiak R, Frankowski R, Mylkie K, Mlynarczyk DT, Ziegler-Borowska M, Zgoła-Grześkowiak A, Goslinski T. TiO2–Fe3O4 Composite Systems—Preparation, Physicochemical Characterization, and an Attempt to Explain the Limitations That Arise in Catalytic Applications. Applied Sciences. 2022; 12(17):8826. https://doi.org/10.3390/app12178826
Chicago/Turabian StyleKrakowiak, Rafal, Robert Frankowski, Kinga Mylkie, Dariusz T. Mlynarczyk, Marta Ziegler-Borowska, Agnieszka Zgoła-Grześkowiak, and Tomasz Goslinski. 2022. "TiO2–Fe3O4 Composite Systems—Preparation, Physicochemical Characterization, and an Attempt to Explain the Limitations That Arise in Catalytic Applications" Applied Sciences 12, no. 17: 8826. https://doi.org/10.3390/app12178826