# The Space-Time Metric Outside a Pulsating Charged Sphere

## Abstract

**:**

## 1. Preliminary Considerations

## 2. Devising the Modeling Equations

## 3. Solving Einstein’s Equations

## 4. Comments

## 5. Conclusions

## Funding

## Conflicts of Interest

## References

- Neslusan, L. On the global electrostatic charge of stars. Astron. Astrophys.
**2001**, 372, 913–915. [Google Scholar] [CrossRef] - Gough, D.O.; Kosovichev, A.G.; Toomre, J.; Anderson, E.; Antia, H.M.; Basu, S.; Chaboyer, B.; Chitre, S.M.; Christensen-Dalsgaard, J.; Dziembowski, W.A.; et al. The seismic structure of the Sun. Science
**1996**, 272, 1296–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Engelhardt, W. On the Solvability of Maxwell’s Equations. Ann. Fond. Louis Broglie
**2012**, 37, 3–14. [Google Scholar] - Funaro, D. Electromagnetism and the Structure of Matter; World Scientific: Singapore, 2008. [Google Scholar]
- Funaro, D. From Photons to Atoms, The Electromagnetic Nature of Matter; World Scientific: Singapore, 2019. [Google Scholar]
- Zhakatayev, A. Divergence of electric field of continuous and of a point charge for relativistic and non-relativistic motion. arXiv
**2016**, arXiv:1608.02898. [Google Scholar] - Born, M.; Infeld, L. Foundations of the new field theory. Proc. R. Soc. Lon. A
**1934**, 144, 425–451. [Google Scholar] [CrossRef] - Arbab, I. Extended electrodynamics and its consequences. Mod. Phys. Lett. B
**2017**, 31, 1750099. [Google Scholar] [CrossRef] - Benci, V.; Fortunato, V. Towards a unified field theory for classical electrodynamics. Arch. Rat. Mech. Anal.
**2004**, 173, 379–414. [Google Scholar] [CrossRef] - Coclite, G.M.; Georgiev, V. Solitary waves for Maxwell Schrödinger equations. Electron. J. Differ. Eq.
**2004**, 94, 1–31. [Google Scholar] - Harmuth, H.F.; Barrett, T.W.; Meffert, B. Modified Maxwell Equations in Quantum Electrodynamics; SCCP; World Scientific: Singapore, 2001; Volume 19. [Google Scholar]
- Hively, L.M.; Giakos, G.C. Toward a more complete electrodynamic theory. Int. J. Signal Imaging Syst. Eng.
**2012**, 5, 3–10. [Google Scholar] [CrossRef] - Lehnert, B.; Roy, S. Extended Electromagnetic Theory—Space Charge in Vacuo and the Rest Mass of the Photon; SCCP; World Scientific: Singapore, 1998; Volume 16. [Google Scholar]
- Munz, C.-D.; Schneider, R.; Sonnendrücker, E.; Voss, U. Maxwell’s equations when the charge conservation is not satisfied. C. R. Acad. Sci. Paris
**1999**, 328, 431–436. [Google Scholar] [CrossRef] - Wang, Z.L. On the expanded Maxwell’s equations for moving charged media system—General theory, mathematical solutions and applications. TENG Mater. Today
**2022**, 52, 348–363. [Google Scholar] [CrossRef] - Funaro, D. Charging capacitors according to Maxwell’s equations: Impossible. Ann. Fond. Louis Broglie
**2014**, 39. [Google Scholar] - Funaro, D. High frequency electrical oscillations in cavities. Math. Model. Anal.
**2018**, 23, 345–358. [Google Scholar] [CrossRef] - Fock, V. The Theory of Space, Time and Gravitation; Pergamon Press: London, UK, 1959. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman and Company: San Francisco, CA, USA, 1973. [Google Scholar]
- Atwater, R.A. Basic Relativity; Springer: New York, NY, USA, 1994. [Google Scholar]
- Hamoui, A. Deux nouvelles classes de solutions non-statiques à symétrie sphérique des équations d’Einstein-Maxwell. Ann. l’IHP Phys. Théorique
**1969**, 10, 195–227. [Google Scholar] - Kuchowicz, B. A non-static sphere of charged dust. Phys. Lett. A
**1970**, 31, 220. [Google Scholar] [CrossRef] - Vickers, P.A. Charged dust spheres in general relativity. Ann. l’IHP Phys. Théorique
**1973**, 18, 137–145. [Google Scholar] - Tikekar, R. A source for the Reissner-Nordström metric. J. Astrophys. Astron.
**1984**, 5, 273–276. [Google Scholar] [CrossRef] - Beltracchi, P.; Gondolo, P. An exact time-dependent interior Schwarzschild solution. arXiv
**2019**, arXiv:1902.07827. [Google Scholar] [CrossRef] [Green Version] - Bondi, H.; Pirani, F.A.E.; Robinson, I. Gravitational waves in general relativity III. Exact plane waves. Proc. R. Soc. Lond. A
**1959**, 251, 519–533. [Google Scholar] - Newman, E.T.; Couch, R.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a Rotating, Charged Mass. J. Math. Phys.
**1965**, 6, 918–919. [Google Scholar] [CrossRef] - Jackson, J.D. Classical Electrodynamics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Funaro, D.
The Space-Time Metric Outside a Pulsating Charged Sphere. *Appl. Sci.* **2022**, *12*, 7290.
https://doi.org/10.3390/app12147290

**AMA Style**

Funaro D.
The Space-Time Metric Outside a Pulsating Charged Sphere. *Applied Sciences*. 2022; 12(14):7290.
https://doi.org/10.3390/app12147290

**Chicago/Turabian Style**

Funaro, Daniele.
2022. "The Space-Time Metric Outside a Pulsating Charged Sphere" *Applied Sciences* 12, no. 14: 7290.
https://doi.org/10.3390/app12147290