Testing the Utilization of a Seismic Network Outside the Main Mining Facility Area for Expanding the Microseismic Monitoring Coverage in a Deep Block Caving
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Method
2.2. Synthetic Model
3. Results
3.1. Following the Facility Scenario
3.2. Additional Seismometer in the Off-Facilities Area Scenario
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orellana, L.F.; Castro, R.; Hekmat, A.; Arancibia, E. Productivity of a Continuous Mining System for Block Caving Mines. Rock Mech. Rock Eng. 2017, 50, 657–663. [Google Scholar] [CrossRef]
- Wagner, H. Deep Mining: A Rock Engineering Challenge. Rock Mech. Rock Eng. 2019, 52, 1417–1446. [Google Scholar] [CrossRef] [Green Version]
- Shelswell, K.; Labrecque, P.; Morrison, D. Increasing Productive Capacity in Block Caving Mines. In Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Vancouver, BC, Canada, 15–17 October 2018; Australian Centre for Geomechanics: Perth, Australia, 2018; pp. 107–118. [Google Scholar]
- Gibowicz, S.J. Seismicity Induced by Mining: An Overview. In Monitoring a Comprehensive Test Ban Treaty; Husebye, E.S., Dainty, A.M., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 385–409. ISBN 978-94-011-0419-7. [Google Scholar]
- Ma, X.; Westman, E.; Counter, D.; Malek, F.; Slaker, B. Passive Seismic Imaging of Stress Evolution with Mining-Induced Seismicity at Hard-Rock Deep Mines. Rock Mech. Rock Eng. 2020, 53, 2789–2804. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Zhao, X.; Westman, E. Review of the Evolution of Mining-Induced Stress and the Failure Characteristics of Surrounding Rock Based on Microseismic Tomography. Shock Vib. 2021, 2021, 2154857. [Google Scholar] [CrossRef]
- Xie, H.; Konietzky, H.; Zhou, H.W. Special Issue “Deep Mining”. Rock Mech. Rock Eng. 2019, 52, 1415–1416. [Google Scholar] [CrossRef] [Green Version]
- Hudyma, M.; Brown, L.; Carusone, O.; Reimer, E. Seismic Hazard in Canadian Mines. In Proceeding of the CIM AGM, Montreal, QC, Canada, 2 May 2017. [Google Scholar]
- Richardson, E. Seismicity in Deep Gold Mines of South Africa: Implications for Tectonic Earthquakes. Bull. Seismol. Soc. Am. 2002, 92, 1766–1782. [Google Scholar] [CrossRef]
- Brady, B.H.G.; Brown, E.T. Rock Mechanics: For Underground Mining, 3rd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; ISBN 978-1-4020-2064-3. [Google Scholar]
- Sainsbury, B.-A.; Pierce, M.; Mas Ivars, D. Analysis of Caving Behaviour Using a Synthetic Rock Mass—Ubiquitous Joint Rock Mass Modelling Technique. In Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium, Perth, Australia, 16–19 September 2008; Australian Centre for Geomechanics: Perth, Australia, 2008; pp. 243–253. [Google Scholar]
- Glazer, S.N. Mine Seismology: Data Analysis and Interpretation; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-32611-5. [Google Scholar]
- Wu, J.; Zeng, Q.; Santosh, M.; Fan, H.; Wei, Z.; Yang, K.; Zhang, Z.; Li, X.; Liang, G. Intrusion-Related Orogenic Gold Deposit in the East Kunlun Belt, NW China: A Multiproxy Investigation. Ore Geol. Rev. 2021, 139, 104550. [Google Scholar] [CrossRef]
- Woods, M.; Poulter, M.; King, R. Progression and Management of Seismic Hazard through the Life of Telfer Sublevel Cave. In Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Vancouver, BC, Canada, 15–17 October 2018; Australian Centre for Geomechanics: Perth, Australia, 2018; pp. 623–636. [Google Scholar]
- Kaven, J.O.; Hickman, S.H.; McGarr, A.F.; Ellsworth, W.L. Surface Monitoring of Microseismicity at the Decatur, Illinois, CO 2 Sequestration Demonstration Site. Seismol. Res. Lett. 2015, 86, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Kenedi, C.L.; Shalev, E.; Lucas, A.; Malin, P. Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–30 April 2010; Volume 6. [Google Scholar]
- Okamoto, K.; Yi, L.; Asanuma, H.; Okabe, T.; Abe, Y.; Tsuzuki, M. Triggering Processes of Microseismic Events Associated with Water Injection in Okuaizu Geothermal Field, Japan. Earth Planets Space 2018, 70, 15. [Google Scholar] [CrossRef] [Green Version]
- Takagishi, M.; Hashimoto, T.; Toshioka, T.; Horikawa, S.; Kusunose, K.; Xue, Z.; Hovorka, S.D. Optimization Study of Seismic Monitoring Network at the CO2 Injection Site—Lessons Learnt from Monitoring Experiment at the Cranfield Site, Mississippi, U.S.A. Energy Procedia 2017, 114, 4028–4039. [Google Scholar] [CrossRef]
- Verdon, J.P.; Kendall, J.-M.; White, D.J.; Angus, D.A.; Fisher, Q.J.; Urbancic, T. Passive Seismic Monitoring of Carbon Dioxide Storage at Weyburn. Lead. Edge 2010, 29, 200–206. [Google Scholar] [CrossRef]
- Rawlinson, N.; Spakman, W. On the Use of Sensitivity Tests in Seismic Tomography. Geophys. J. Int. 2016, 205, 1221–1243. [Google Scholar] [CrossRef]
- Mendecki, A.J.; van Aswegen, G.; Mountfort, P. A Guide to Seismic Monitoring Mines. In A Handbook on Rock Engineering Practice for Tabular Hard Rock Mines; Safety in Mines Research Advisory Committee: Johannesburg, South Africa, 1999; Chapter 9. [Google Scholar]
- Gong, S.; Li, J.; Ju, F.; Dou, L.; He, J.; Tian, X. Passive Seismic Tomography for Rockburst Risk Identification Based on Adaptive-Grid Method. Tunn. Undergr. Space Technol. 2019, 86, 198–208. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Zhao, D.; Shang, X.; Dong, L. Time-Lapse Seismic Tomography of an Underground Mining Zone. Int. J. Rock Mech. Min. Sci. 2018, 107, 136–149. [Google Scholar] [CrossRef]
- Ghosh, G.K.; Sivakumar, C. Application of Underground Microseismic Monitoring for Ground Failure and Secure Longwall Coal Mining Operation: A Case Study in an Indian Mine. J. Appl. Geophys. 2018, 150, 21–39. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, H.; Westman, E. New Time-Lapse Seismic Tomographic Scheme Based on Double-Difference Tomography and Its Application in Monitoring Temporal Velocity Variations Caused by Underground Coal Mining. Geophys. J. Int. 2018, 215, 2093–2104. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, X.; Tan, Y.; Zhang, H.; Huang, W.; Li, Q. A Study of Rockburst Hazard Evaluation Method in Coal Mine. Shock Vib. 2016, 2016, 8740868. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Thurber, C. Development and Applications of Double-Difference Seismic Tomography. Pure Appl. Geophys. 2006, 163, 373–403. [Google Scholar] [CrossRef]
- Waldhauser, F. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bull. Seismol. Soc. Am. 2000, 90, 1353–1368. [Google Scholar] [CrossRef]
- Ma, X.; Westman, E.; Malek, F.; Yao, M. Stress Redistribution Monitoring Using Passive Seismic Tomography at a Deep Nickel Mine. Rock Mech. Rock Eng. 2019, 52, 3909–3919. [Google Scholar] [CrossRef]
- Villegas, T.; Nordlund, E.; Dahnér-Lindqvist, C. Hangingwall Surface Subsidence at the Kiirunavaara Mine, Sweden. Eng. Geol. 2011, 121, 18–27. [Google Scholar] [CrossRef]
- de Beer, W.; Jalbout, A.; Ginting, A.; Sullivan, M.; Collins, D. The Design, Optimisation, and Use of the Seismic System at the Deep and High-Stress Block Cave Deep Mill Level Zone Mine. In Proceedings of the First International Conference on Underground Mining Technology, Sudbury, ON, Canada, 11–13 October 2017; Australian Centre for Geomechanics: Perth, Australia, 2017; pp. 233–245. [Google Scholar]
- Lynch, R.; Meyer, S.; Lötter, E.; Lett, J. Tracking Cave Shape Development with Microseismic Data. In Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Vancouver, BC, Canada, 15–17 October 2018; Australian Centre for Geomechanics: Perth, Australia, 2018; pp. 555–564. [Google Scholar]
- Mercier, J.-P.; de Beer, W.; Mercier, J.-P.; Morris, S. Evolution of a Block Cave from Time-Lapse Passive Source Body-Wave Traveltime Tomography. Geophysics 2015, 80, WA85–WA97. [Google Scholar] [CrossRef]
- Duplancic, P.; Brady, B.H. Characterisation of Caving Mechanisms by Analysis of Seismicity and Rock Stress. In Proceedings of the 9th International Congress on Rock Mechanics, Paris, France, 25–28 August 1999; Volume 2, pp. 1049–1053. [Google Scholar]
- Glazer, S.; Hepworth, N. Seismicity Induced by Cave Mining, Palabora Experience. In Proceedings of the 6th International Symposium on Rockburst and Seismicity in Mines, Perth, Australia, 9–11 March 2005; Australian Centre for Geomechanics: Perth, Australia, 2005; pp. 281–289. [Google Scholar]
- Cumming-Potvin, D.; Wesseloo, J.; Jacobsz, S.; Kearsley, E. A Re-Evaluation of the Conceptual Model of Caving Mechanics. In Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Vancouver, BC, Canada, 15–17 October 2018; Australian Centre for Geomechanics: Perth, Australia, 2018; pp. 179–190. [Google Scholar]
- Kissling, E. Geotomography with Local Earthquake Data. Rev. Geophys. 1988, 26, 659–698. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidayat, W.; Sahara, D.P.; Widiyantoro, S.; Suharsono, S.; Wattimena, R.K.; Melati, S.; Putra, I.P.R.A.; Prahastudhi, S.; Sitorus, E.; Riyanto, E. Testing the Utilization of a Seismic Network Outside the Main Mining Facility Area for Expanding the Microseismic Monitoring Coverage in a Deep Block Caving. Appl. Sci. 2022, 12, 7265. https://doi.org/10.3390/app12147265
Hidayat W, Sahara DP, Widiyantoro S, Suharsono S, Wattimena RK, Melati S, Putra IPRA, Prahastudhi S, Sitorus E, Riyanto E. Testing the Utilization of a Seismic Network Outside the Main Mining Facility Area for Expanding the Microseismic Monitoring Coverage in a Deep Block Caving. Applied Sciences. 2022; 12(14):7265. https://doi.org/10.3390/app12147265
Chicago/Turabian StyleHidayat, Wahyu, David P. Sahara, Sri Widiyantoro, Suharsono Suharsono, Ridho Kresna Wattimena, Sari Melati, I Putu Raditya Ambara Putra, Septian Prahastudhi, Eric Sitorus, and Erwin Riyanto. 2022. "Testing the Utilization of a Seismic Network Outside the Main Mining Facility Area for Expanding the Microseismic Monitoring Coverage in a Deep Block Caving" Applied Sciences 12, no. 14: 7265. https://doi.org/10.3390/app12147265
APA StyleHidayat, W., Sahara, D. P., Widiyantoro, S., Suharsono, S., Wattimena, R. K., Melati, S., Putra, I. P. R. A., Prahastudhi, S., Sitorus, E., & Riyanto, E. (2022). Testing the Utilization of a Seismic Network Outside the Main Mining Facility Area for Expanding the Microseismic Monitoring Coverage in a Deep Block Caving. Applied Sciences, 12(14), 7265. https://doi.org/10.3390/app12147265