The Effects of Optical Aberrations to Illumination Beam Thickness in Two-Photon Excitation Microscopes
Abstract
:1. Introduction
2. Simulation Methods and Evaluation Parameters
2.1. Simulation Methods and Aberration Description
2.2. Evaluation Factors of Thickness
3. Results and Discussions
3.1. Effects of Single Zernike Mode Aberration
3.2. Effects of Random Biological Aberrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denk, W.; Strickler, J.H.; Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahrbach, F.O.; Gurchenkov, V.; Alessandri, K.; Nassoy, P.; Rohrbach, A. Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation. Opt. Express 2013, 21, 13824–13839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.L.; Rivera, J.A.; Sun, W.; Peterson, J.; Haeberle, H.; Rubin, S.; Ji, N. High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics. Nat. Commun. 2020, 11, 6020. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, R.D.; Wilson, T.; Booth, M.J. Effects of aberrations and specimen structure in conventional, confocal and two-photon fluorescence microscopy. J. Microsc. 2012, 245, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Débarre, D.; Botcherby, E.J.; Watanabe, T.; Srinivas, S.; Booth, M.J.; Wilson, T. Image-based adaptive optics for two-photon microscopy. Opt. Lett. 2009, 34, 2495–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Milkie, D.E.; Saxena, A.; Engerer, P.; Misgeld, T.; Bronner, M.E.; Mumm, J.; Betzig, E. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods 2014, 11, 625–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Sun, W.; Richie, C.T.; Harvey, B.K.; Betzig, E.; Ji, N. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 2015, 6, 7276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Wu, Y.; Winter, P.; Fischer, R.; Nogare, D.D.; Hong, A.; Mccormick, C.; Christensen, R.; Dempsey, W.P.; Arnold, D.B.; et al. Adaptive optics improves multiphoton super-resolution imaging. Nat. Methods 2017, 14, 869–872. [Google Scholar] [CrossRef] [PubMed]
- Bourgenot, C.; Saunter, C.D.; Taylor, J.M.; Girkin, J.M.; Love, G.D. 3D adaptive optics in a light sheet microscope. Opt. Express 2012, 20, 13252–13261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moosavi, S.H.; Gohn-Kreuz, C.; Rohrbach, A. Feedback phase correction of Bessel beams in confocal line light-sheet microscopy: A simulation study. Appl. Opt. 2013, 52, 5835–5842. [Google Scholar] [CrossRef] [PubMed]
- Jorand, R.; le Corre, G.; Andilla, J.; Maandhui, A.; Frongia, C.; Lobjois, V.; Ducommun, B.; Lorenzo, C. Deep and clear optical imaging of thick inhomogeneous samples. PLoS ONE 2012, 7, e35795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durnin, J.; Miceli, J.J.; Eberly, J.H. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499–1501. [Google Scholar] [CrossRef] [PubMed]
- Vasara, A.; Turunen, J.; Friberg, A.T. Realization of general nondiffracting beams with computer-generated holograms. J. Opt. Soc. Am. A 1989, 6, 1748–1754. [Google Scholar] [CrossRef] [PubMed]
- Botcherby, E.J.; Juškaitis, R.; Wilson, T. Scanning two photon fluorescence microscopy with extended depth of field. Opt. Commun. 2006, 268, 253–260. [Google Scholar] [CrossRef]
- Hardy, J.W. Adaptive Optics for Astronomical Telescopes; Oxford University Press: Oxford, UK, 1998; Volume 16. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherland, 2013. [Google Scholar]
- Goodman, J.W. Introduction to Fourier Optics; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Zhang, C.; Sun, W.; Mu, Q.; Cao, Z.; Zhang, X.; Wang, S.; Xuan, L. Analysis of aberrations and performance evaluation of adaptive optics in two-photon light-sheet microscopy. Opt. Commun. 2019, 435, 46–53. [Google Scholar] [CrossRef]
- Sun, W.; Li, N.; Zhang, C.; Mu, Q.; Zhang, X.; Yang, C.; Peng, Z.; Diao, Z.; Xuan, L.; Shao, L. Simulation analysis and comparison of the effects of aberrations on multiphoton fluorescent light sheets. Opt. Commun. 2021, 482, 126597. [Google Scholar] [CrossRef]
- Remacha, E.; Friedrich, L.; Vermot, J.; Fahrbach, F.O. How to define and optimize axial resolution in light-sheet microscopy: A simulation-based approach, Biomed. Opt. Express 2020, 11, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Schwertner, M.; Booth, M.J.; Neil, M.A.; Wilson, T. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry. J. Microsc. 2004, 213, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Schwertner, M.; Booth, M.J.; Wilson, T. Characterizing specimen induced aberrations for high NA adaptive optical microscopy. Opt. Express 2004, 12, 6540–6552. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Luo, F.; Yang, C.; Peng, Z.; Xuan, L.; Bu, Q.; Mu, Q.; Zhang, X. The Effects of Optical Aberrations to Illumination Beam Thickness in Two-Photon Excitation Microscopes. Appl. Sci. 2022, 12, 7156. https://doi.org/10.3390/app12147156
Li N, Luo F, Yang C, Peng Z, Xuan L, Bu Q, Mu Q, Zhang X. The Effects of Optical Aberrations to Illumination Beam Thickness in Two-Photon Excitation Microscopes. Applied Sciences. 2022; 12(14):7156. https://doi.org/10.3390/app12147156
Chicago/Turabian StyleLi, Nan, Fanglin Luo, Chengliang Yang, Zenghui Peng, Li Xuan, Qingpan Bu, Quanquan Mu, and Xingyun Zhang. 2022. "The Effects of Optical Aberrations to Illumination Beam Thickness in Two-Photon Excitation Microscopes" Applied Sciences 12, no. 14: 7156. https://doi.org/10.3390/app12147156
APA StyleLi, N., Luo, F., Yang, C., Peng, Z., Xuan, L., Bu, Q., Mu, Q., & Zhang, X. (2022). The Effects of Optical Aberrations to Illumination Beam Thickness in Two-Photon Excitation Microscopes. Applied Sciences, 12(14), 7156. https://doi.org/10.3390/app12147156