On the Study of Advanced Nanostructured Semiconductor-Based Metamaterial
Abstract
:1. Introduction
2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Min, L.; Huang, L.-R.; Sun, R.; Xi, M.-M.; Li, Z.-W. Dual Metamaterial With Large Birefringence. IEEE Photon. J. 2015, 7, 1. [Google Scholar] [CrossRef]
- Kong, X.; Xu, J.; Liu, S.; Mo, J.-J. Broadband and conformal metamaterial absorber. Front. Optoelectron. 2017, 10, 124. [Google Scholar] [CrossRef]
- Min, L.; Huang, L. All-semiconductor metamaterial-based optical circuit board at the microscale. J. Appl. Phys. 2015, 118, 013104. [Google Scholar] [CrossRef]
- Klotz, G.; Malléjac, N.; Guenneau, S.; Enoch, S. Controlling frequency dispersion in electromagnetic invisibility cloaks. Sci. Rep. 2019, 9, 6022. [Google Scholar] [CrossRef]
- Kadic, M.; Milton, G.W.; van Hecke, M.; Wegener, M. 3D metamaterials. Nat. Rev. Phys. 2019, 1, 198–210. [Google Scholar] [CrossRef]
- Ratni, B.; Lustrac, A.D.; Piau, G.P.; Burokur, S.N. Active metasurface for reconfgurable refectors. Appl. Phys. A 2018, 124, 104. [Google Scholar] [CrossRef]
- Dani, K.M.; Ku, Z.; Upadhya, P.C.; Prasankumar, R.P.; Brueck, S.R.J.; Taylor, A.J. Subpicosecond Optical Switching with a Negative Index Metamaterial. Nano Lett. 2009, 9, 3565. [Google Scholar] [CrossRef] [Green Version]
- Anglin, K.; Ribaudo, T.; Adams, D.C.; Qian, X.; Goodhue, W.D.; Dooley, S.; Shaner, E.A.; Wasserman, D. Voltage-controlled active mid-infrared plasmonic devices. J. Appl. Phys. 2011, 109, 1. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Lakhtakia, A.; Qiu, C.-W. Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability. Opt. Express 2008, 16, 14390. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-T.; Yang, H.; Singh, R.; O’Hara, J.; Azad, A.; Trugman, S.; Jia, Q.X.; Taylor, A.J. Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials. Phys. Rev. Lett. 2010, 105, 247402. [Google Scholar] [CrossRef] [Green Version]
- Karl, N.; Heimbeck, M.S.; Everitt, H.O.; Chen, H.-T.; Taylor, A.J.; Brener, I.; Benz, A.; Reno, J.L.; Mendis, R.; Mittleman, D.M. Characterization of an active metasurface using terahertz ellipsometry. Appl. Phys. Lett. 2017, 111, 191101. [Google Scholar] [CrossRef]
- Jun, Y.C.; Gonzales, E.; Reno, J.L.; Shaner, E.A.; Gabbay, A.; Brener, I. Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt. Express 2012, 20, 1903. [Google Scholar] [CrossRef] [PubMed]
- Sherrott, M.C.; Hon, P.W.; Fountaine, K.T.; Garcia, J.C.; Ponti, S.M.; Brar, V.W.; Sweatlock, L.A.; Atwater, H.A. Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfgurable Mid-Infrared Metasurfaces. Nano Lett. 2017, 17, 3027–3034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-W.; Lee, H.W.H.; Sokhoyan, R.; Pala, R.A.; Thyagarajan, K.; Han, S.; Tsai, D.P.; Atwater, H.A. Gate-Tunable Conducting Oxide Metasurfaces. Nano Lett. 2016, 16, 5319. [Google Scholar] [CrossRef] [Green Version]
- Pryce, I.M.; Aydin, K.; Kelaita, Y.A.; Briggs, R.M.; Atwater, H.A. Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability. Nano Lett. 2010, 10, 4222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, J.; Ramakrishna, S.A.; Rajeswaran, B.; Umarji, A.M.; Achanta, V.G.; Agarwal, A.K.; Ghosh, A. High contrast switchability of VO_2 based metamaterial absorbers with ITO ground plane. Opt. Express 2017, 25, 9116. [Google Scholar] [CrossRef]
- Fan, K.; Padilla, W.J. Dynamic electromagnetic metamaterials. Mater. Today 2014, 18, 39–50. [Google Scholar] [CrossRef]
- Taliercio, T.; Biagioni, P. Semiconductor infrared plasmonics. Nanophotonics 2019, 8, 949–990. [Google Scholar] [CrossRef]
- Gric, T.; Hess, O. Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt. Express 2017, 25, 11466–11476. [Google Scholar] [CrossRef]
- Brouillet, J.; Papadakis, G.T.; Atwater, A.H.A. Experimental demonstration of tunable graphene-polaritonic hyperbolic metamaterial. Opt. Express 2019, 27, 30225–30232. [Google Scholar] [CrossRef]
- Gric, T.; Gorodetsky, A.; Trofimov, A.; Rafailov, E. Tunable Plasmonic Properties and Absorption Enhancement in Terahertz Photoconductive Antenna Based on Optimized Plasmonic Nanostructures. J. Infrared Millim. Terahertz Waves 2018, 39, 1028–1038. [Google Scholar] [CrossRef]
- Gric, T.; Hess, O. Controlling hybrid-polarization surface plasmon polaritons in dielectric-transparent conducting oxides metamaterials via their effective properties. J. Appl. Phys. 2017, 122, 193105. [Google Scholar] [CrossRef]
- Ioannidis, T.; Gric, T.; Rafailov, E. Surface plasmon polariton waves propagation at the boundary of graphene based metamaterial and corrugated metal in THz range. Opt. Quantum Electron. 2019, 52, 10. [Google Scholar] [CrossRef]
- Gric, T.; Hess, O. Surface plasmon polaritons at the interface of two nanowire metamaterials. J. Opt. 2017, 19, 085101. [Google Scholar] [CrossRef]
- Gric, T.; Hess, O. Investigation of Hyperbolic Metamaterials. Appl. Sci. 2018, 8, 1222. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, G.T.; Fleischman, D.; Davoyan, A.; Yeh, P.; Atwater, H.A. Optical magnetism in planar metamaterial heterostructures. Nat. Commun. 2018, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, A.J.; Alekseyev, L.; Howard, S.S.; Franz, K.J.; Wasserman, D.; Podolskiy, V.A.; Narimanov, E.E.; Sivco, D.L.; Sivco, C. Negative refraction in semiconductor metamaterials. Nat. Mater. 2007, 6, 946. [Google Scholar] [CrossRef]
- West, P.; Ishii, S.; Naik, G.; Emani, N.K.; Shalaev, V.; Boltasseva, A. Searching for better plasmonic materials. Laser Photon. Rev. 2010, 4, 795–808. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Parimi, P.; He, Y.; Harris, V.; Vittoria, C. Tunable negative refractive index metamaterial phase shifter. Electron. Lett. 2007, 43, 1440–1441. [Google Scholar] [CrossRef]
- Huang, Y.J.; Wen, G.J.; Li, T.Q.; Xie, K. Left handed metamaterial with ε = −ε0 and μ = −μ0 and some applications. ASEMD 2009, 119–122. [Google Scholar]
- Chen, H.; Wu, B.-I.; Ran, L.; Grzegorczyk, T.M.; Kong, J.A. Controllable left-handed metamaterial and its application to a steerable antenna. Appl. Phys. Lett. 2006, 89, 053509. [Google Scholar] [CrossRef]
- Shadrivov, I.V.; Morrison, S.K.; Kivshar, Y.S. Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt. Express 2006, 14, 9344–9349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Feng, Y.; Zhao, J.; Huang, C.; Wang, Z.; Jiang, T. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Opt. Express 2010, 18, 23196–23203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gric, T.; Rafailov, E. On the Study of Advanced Nanostructured Semiconductor-Based Metamaterial. Appl. Sci. 2022, 12, 6250. https://doi.org/10.3390/app12126250
Gric T, Rafailov E. On the Study of Advanced Nanostructured Semiconductor-Based Metamaterial. Applied Sciences. 2022; 12(12):6250. https://doi.org/10.3390/app12126250
Chicago/Turabian StyleGric, Tatjana, and Edik Rafailov. 2022. "On the Study of Advanced Nanostructured Semiconductor-Based Metamaterial" Applied Sciences 12, no. 12: 6250. https://doi.org/10.3390/app12126250
APA StyleGric, T., & Rafailov, E. (2022). On the Study of Advanced Nanostructured Semiconductor-Based Metamaterial. Applied Sciences, 12(12), 6250. https://doi.org/10.3390/app12126250