Inhibition of TP53 Mutant Oral Cancer by Reactivating p53
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Western Blot Analysis
2.3. HDAC Activity and Caspase-9 Activity Assays
2.4. The Effect of p53 siRNA on 4HR-Induced Apoptosis
2.5. Confocal Microscopy
2.6. Xenograft Study
2.7. Immunohistochemical Staining
2.8. Cancer and p53 Signalling Phospho Antibody Array
2.9. Statistical Analysis
3. Results
3.1. Increased Phosphorylation of p53 upon Treatment with 4HR
3.2. Increased Acetylation of p53 upon Treatment with 4HR
3.3. HR-Induced Apoptosis-Associated Protein Expression via Both p53-Dependent and Independent Pathways
3.4. HR Administration Exhibited Tumour-Suppressing Effects in the Xenograft Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pecorino, L. Molecular Biology of Cancer, 4th ed.; Oxford University Press: Cary, NC, USA, 2016. [Google Scholar]
- Mrakovcic, M.; Kleinheinz, J.; Fröhlich, L.F. p53 at the crossroads between different types of HDAC inhibitor-mediated cancer cell death. Int. J. Mol. Sci. 2019, 20, 2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, I.; Oliveira, L.P.; Tucci, P.; Álvarez-Valín, F.; Coudry, R.A.; Marín, M. Different mutation profiles associated to P53 accumulation in colorectal cancer. Gene 2012, 499, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.; Liu, S.; Tian, X.; Wang, X.; Gao, P. A TP53 mutation model for the prediction of prognosis and therapeutic responses in head and neck squamous cell carcinoma. BMC Cancer 2021, 21, 1035. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, A.; Takahashi, H.; Patel, A.; Osman, A.; Myers, J. Targeting the DNA damage response in OSCC with TP 53 mutations. J. Dent. Res. 2018, 97, 635–644. [Google Scholar] [CrossRef]
- Brandvold, K.R.; Morimoto, R.I. The Chemical Biology of Molecular Chaperones—Implications for Modulation of Proteostasis. J. Mol. Biol. 2015, 427, 2931–2947. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Yamaguchi, H.; Higashimoto, Y.; Chao, C.; Xu, Y.; Fornace, A.J., Jr.; Appella, E.; Anderson, C.W. Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J. Biol. Chem. 2003, 278, 37536–37544. [Google Scholar] [CrossRef] [Green Version]
- Appella, E.; Anderson, C.W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 2001, 268, 2764–2772. [Google Scholar] [CrossRef]
- Yao, T.-P.; Seto, E. Histone Deacetylases: The Biology and Clinical Implication; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 206. [Google Scholar]
- Muliukin, A.L.; Vakhrushev, M.A.; Strazhevskaia, N.B.; Shmyrina, A.S.; Zhdanov, R.I.; Suzina, N.E.; Duda, V.I.; Kozlova, A.N.; El’-Registan, G.I. Effect of alkylhydroxybenzenes, microbial anabiosis inducers, on the structural organization of Pseudomonas aurantiaca DNA and on phenotypic dissociation induction. Mikrobiologiia 2005, 74, 157–165. [Google Scholar] [CrossRef]
- Chhabra, R.; Huff, J.; Haseman, J.; Hall, A.; Baskin, G.; Cowan, M. Inhibition of some spontaneous tumors by 4-hexylresorcinol in F344/N rats and B6C3F1 mice. Fundam. Appl. Toxicol. 1988, 11, 685–690. [Google Scholar] [CrossRef]
- Kim, S.G.; Lee, S.W.; Park, Y.W.; Jeong, J.H.; Choi, J.Y. 4-hexylresorcinol inhibits NF-kappaB phosphorylation and has a synergistic effect with cisplatin in KB cells. Oncol. Rep. 2011, 26, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y.; Kweon, H.-Y.; Kim, D.-W.; Choi, J.-Y.; Kim, S.-G. 4-Hexylresorcinol Inhibits Class I Histone Deacetylases in Human Umbilical Cord Endothelial Cells. Appl. Sci. 2021, 11, 3486. [Google Scholar] [CrossRef]
- Kim, S.G. 4-Hexylresorcinol: Pharmacologic chaperone and its application for wound healing. Maxillofac. Plast. Reconstr. Surg. 2022, 44, 5. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Tan, J.; Miao, Y.; Li, M.; Zhang, Q. Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J. Cell Physiol. 2017, 232, 2977–2984. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tavana, O.; Gu, W. p53 modifications: Exquisite decorations of the powerful guardian. J. Mol. Cell Biol. 2019, 11, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Kon, N.; Gu, A.P.; Tavana, O.; Gu, W. Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene 2022, 41, 3039–3050. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, J.; Lee, S.A.; Kim, E.-J.; Chun, Y.-C.; Ryu, M.H.; Yook, J.-I. Characterization of newly established oral cancer cell lines derived from six squamous cell carcinoma and two mucoepidermoid carcinoma cells. Exp. Mol. Med. 2005, 37, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gelman, I.H.; Katsuta, E.; Liang, Y.; Wang, X.; Li, J.; Qu, J.; Yan, L.; Takabe, K.; Hochwald, S.N. Glucose Drives Growth Factor-Independent Esophageal Cancer Proliferation via Phosphohistidine-Focal Adhesion Kinase Signaling. Cell Mol. Gastroenterol. Hepatol. 2019, 8, 37–60. [Google Scholar] [CrossRef] [Green Version]
- Mazar, J.; Rosado, A.; Shelley, J.; Marchica, J.; Westmoreland, T.J. The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma. Oncotarget 2017, 8, 6589. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, N.; Arakaki, R.; Omotehara, F.; Yamada, K.; Mishima, K.; Saito, I.; Hayashi, Y. Novel role for RbAp48 in tissue-specific, estrogen deficiency-dependent apoptosis in the exocrine glands. Mol. Cell. Biol. 2006, 26, 2924–2935. [Google Scholar] [CrossRef] [Green Version]
- Thiagarajan, D.; Vedantham, S.; Ananthakrishnan, R.; Schmidt, A.M.; Ramasamy, R. Mechanisms of transcription factor acetylation and consequences in hearts. Biochim. Biophys. Acta 2016, 1862, 2221–2231. [Google Scholar] [CrossRef]
- Jimenez, G.S.; Khan, S.H.; Stommel, J.M.; Wahl, G.M. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene 1999, 18, 7656–7665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem. 2000, 69, 183–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaida, A.; Iwakuma, T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int. J. Mol. Sci. 2021, 22, 13527. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Kim, S.G.; Choi, J.Y.; Lee, S.K. Recapitulating orthotopic tumor model through establishment of a parotid gland tumor with lung metastasis using HeLa cell injection into nude mice. Oncol. Rep. 2010, 23, 701–708. [Google Scholar] [CrossRef]
- Chia, J.; Tham, K.M.; Gill, D.J.; Bard-Chapeau, E.A.; Bard, F.A. ERK8 is a negative regulator of O-GalNAc glycosylation and cell migration. Elife 2014, 3, e01828. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-G.; JeonG, J.-H.; Park, Y.-W.; SonG, J.-Y.; Kim, A.-S.; CHoI, J.-Y.; Chae, W.-S. 4-Hexylresorcinol inhibits transglutaminase-2 activity and has synergistic effects along with cisplatin in KB cells. Oncol. Rep. 2011, 25, 1597–1602. [Google Scholar] [CrossRef]
- Wang, P.; Reed, M.; Wang, Y.; Mayr, G.; Stenger, J.E.; Anderson, M.E.; Schwedes, J.F.; Tegtmeyer, P. p53 domains: Structure, oligomerization, and transformation. Mol. Cell Biol. 1994, 14, 5182–5191. [Google Scholar] [CrossRef]
- Song, J.; Yu, J.; Jeong, L.S.; Lee, S.K. A novel cytarabine analog evokes synthetic lethality by targeting MK2 in p53-deficient cancer cells. Cancer Lett. 2021, 497, 54–65. [Google Scholar] [CrossRef]
- Katayama, H.; Sasai, K.; Kawai, H.; Yuan, Z.-M.; Bondaruk, J.; Suzuki, F.; Fujii, S.; Arlinghaus, R.B.; Czerniak, B.A.; Sen, S. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat. Genet. 2004, 36, 55–62. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Borcherds, W.; Song, T.; Wei, X.; Das, M.; Chen, L.; Daughdrill, G.W.; Chen, J. Interaction between p53 N terminus and core domain regulates specific and nonspecific DNA binding. Proc. Natl. Acad. Sci. USA 2019, 116, 8859–8868. [Google Scholar] [CrossRef] [Green Version]
- Paluvai, H.; Di Giorgio, E.; Brancolini, C. Unscheduled HDAC4 repressive activity in human fibroblasts triggers TP53-dependent senescence and favors cell transformation. Mol. Oncol. 2018, 12, 2165–2181. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, N.D.; Hanel, W.; Li, D.; Becker, K.; Reich, N.; Moll, U.M. Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding. Cell Death Differ. 2010, 17, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-G.; Kim, A.-S.; Jeong, J.-H.; Choi, J.-Y.; Kweon, H. 4-hexylresorcinol stimulates the differentiation of SCC-9 cells through the suppression of E2F2, E2F3 and Sp3 expression and the promotion of Sp1 expression. Oncol. Rep. 2012, 28, 677–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.J.; Kim, S.G. The effect of 4-hexylresocinol administration on SCC-9 cells: Mass spectrometric identification of proteins and cDNA microarray analysis. Maxillofac. Plast. Reconstr. Surg. 2021, 43, 28. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, S.G.; Park, Y.W.; Kweon, H.; Kim, J.Y.; Rotaru, H. Cisplatin and 4-hexylresorcinol synergise to decrease metastasis and increase survival rate in an oral mucosal melanoma xenograft model: A preliminary study. Tumour. Biol. 2013, 34, 1595–1603. [Google Scholar] [CrossRef]
- Rahmani, B.; Patel, S.; Seyam, O.; Gandhi, J.; Reid, I.; Smith, N.; Khan, S.A. Current understanding of tumor lysis syndrome. Hematol. Oncol. 2019, 37, 537–547. [Google Scholar] [CrossRef]
- Yalamanchili, M.; Lesser, G.J. Malignant spinal cord compression. Curr. Treat. Options Oncol. 2003, 4, 509–516. [Google Scholar] [CrossRef]
- Suen, J.Y.; Johns, M.E. Chemotherapy for salivary gland cancer. Laryngoscope 1982, 92, 235–239. [Google Scholar] [CrossRef]
Cancer Signal | Ratio * | p53 Signal | Ratio † |
---|---|---|---|
Caspase-9 | 1.539 | p-MK2 (Thr334) | 1.440 |
Histone H2A | 1.286 | p-MDM2 (Ser166) | 1.218 |
STAT4 | 1.434 | p-BRCA1 (Ser1524) | 0.777 |
ERK8 | 2.836 | p-HDAC4 (Ser632) | 0.756 |
HDAC4 | 0.766 | p-HDAC5 (Ser259) | 0.799 |
MDM2 | 1.890 | p-p53 (Ser315) | 1.203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.-J.; Kim, D.-W.; Che, X.; Choi, J.-Y.; Kim, S.-G. Inhibition of TP53 Mutant Oral Cancer by Reactivating p53. Appl. Sci. 2022, 12, 5921. https://doi.org/10.3390/app12125921
Kang Y-J, Kim D-W, Che X, Choi J-Y, Kim S-G. Inhibition of TP53 Mutant Oral Cancer by Reactivating p53. Applied Sciences. 2022; 12(12):5921. https://doi.org/10.3390/app12125921
Chicago/Turabian StyleKang, Yei-Jin, Dae-Won Kim, Xiangguo Che, Je-Yong Choi, and Seong-Gon Kim. 2022. "Inhibition of TP53 Mutant Oral Cancer by Reactivating p53" Applied Sciences 12, no. 12: 5921. https://doi.org/10.3390/app12125921
APA StyleKang, Y.-J., Kim, D.-W., Che, X., Choi, J.-Y., & Kim, S.-G. (2022). Inhibition of TP53 Mutant Oral Cancer by Reactivating p53. Applied Sciences, 12(12), 5921. https://doi.org/10.3390/app12125921