Promising Cr-Doped ZnO Nanorods for Photocatalytic Degradation Facing Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis Route of Cr-Doped ZnO Nanorods
2.2. Photocatalytic Reaction during the Photodegradation Process of the Methyl Orange
3. Results
3.1. XRD Measurements
3.2. TEM Characterization of Cr-Doped ZnO Nanorods
3.3. XPS Analysis
3.4. Photoluminescence Analysis
4. Photocatalytic Properties
4.1. Photocatalytic Activity of Methyl Orange
4.2. Kinetic Study of Photocatalytic Degradation of MO
4.3. Mechanism of the Photocatalytic Activity
4.4. Change of Reaction Rate in the Presence and Absence of a Quenching Agent
4.5. Temperature Effect
4.6. MO Concentration Dependency of the Photodegradation
4.7. Study of the Photocatalyst Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Karimi-Maleh, H.; Kumar, B.G.; Rajendran, S.; Qin, J.; Vadivel, S.; Durgalakshmi, D.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq. 2020, 314, 113588. [Google Scholar] [CrossRef]
- Saravanan, R.; Thirumal, E.; Gupta, V.; Narayanan, V.; Stephen, A. The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J. Mol. Liq. 2013, 177, 394–401. [Google Scholar] [CrossRef]
- Liu, H.-L.; Zhou, D.; Li, X.-Z.; Yue, P.-T. Photoelectrocatalytic degradation of rose Bengal. J. Environ. Sci. 2003, 15, 595. [Google Scholar]
- Agustina, T.E.; Ang, H.M. Decolorization and mineralization of CI reactive blue 4 and CI reactive red 2 by Fenton oxidation process. Int. J. Chem. Environ. Eng. 2012, 3, 141. [Google Scholar]
- Soria, J.; Conesa, J.C.; Augugliaro, V.; Palmisano, L.; Schiavello, M.; Sclafani, A. Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J. Phys. Chem. Solids 1991, 95, 274. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. Solids 1994, 98, 13669. [Google Scholar] [CrossRef]
- Tanimoto, T.; Suekuni, K.; Tanishita, T.; Usui, H.; Tadano, T.; Kamei, T.; Saito, H.; Nishiate, H.; Lee, C.H.; Kuroki, K.; et al. Enargite Cu3PS4: A Cu–S-Based Thermoelectric Material with a Wurtzite-Derivative Structure. Adv. Funct. Mater. 2020, 30, 2000973. [Google Scholar] [CrossRef]
- Jing, L.; Qu, Y.; Wang, B.; Li, S.; Jiang, B.; Yang, L.; Fu, W.; Fu, H.; Sun, J. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773. [Google Scholar]
- Sreekanth, M.; Ghosh, S.; Mehta, S.K.; Ganguli, A.K.; Jha, M. Investigation of the growth mechanism of the formation of ZnO nanorods by thermal decomposition of zinc acetate and their field emission properties. CrystEngComm J. 2017, 19, 2264–2270. [Google Scholar]
- Saravanan, R.; Santhi, K.; Sivakumar, N.; Narayanan, V.; Stephen, A. Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application. Mater. Charact. 2012, 67, 10. [Google Scholar] [CrossRef]
- Lkallas, F.H.A.; Elshokrofy, K.M.; Mansour, S.A. Structural and diffuse reflectance characterization of cobalt-doped titanium dioxide nanostructured powder prepared via facile sonochemical hydrolysis technique. J. Inorg. Organomet. Polym. Mat. 2019, 29, 792. [Google Scholar] [CrossRef]
- Meng, A.; Xing, J.; Li, Z.; Li, Q. Cr-doped ZnO nanoparticles: Synthesis, characterization, adsorption property, and recyclability. ACS Appl. Mat. Interf. 2015, 7, 27449. [Google Scholar] [CrossRef]
- Tony, M.; Mansour, S.A. Removal of the commercial reactive dye Procion Blue MX-7RX from real textile wastewater using the synthesized Fe2O3 nanoparticles at different particle sizes as a source of Fenton’s reagent. Int. J. Environ. Sci. Technol. 2020, 17, 709–720. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Z.; Li, Q.; Guo, K. A two-step continuous synthesis of α-ketoamides and α-amino ketones from 2° benzylic alcohols using hydrogen peroxide as an economic and benign oxidant. RSC Adv. 2016, 6, 25167. [Google Scholar] [CrossRef]
- Farha, A.H.; Mansour, S.A.; Kotkata, M.F. Synthesis and Study of ZnO Nanoparticles by Polymer Pyrolysis Route Using Two Different Polymerization Initiators. J. Mater. Sci. 2016, 51, 9855. [Google Scholar] [CrossRef]
- Han, J.; Fan, F.; Xu, C.; Lin, S.; Wei, M.; Duan, X.; Wang, Z.L. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 2010, 21, 405203. [Google Scholar] [CrossRef]
- Bousslama, W.; Sieber, B.; Elhouichet, H.; Gelloz, B.; Addad, A.; Ferid, M. Enhancement of the intensity ratio of ultraviolet to visible luminescence with increased excitation in ZnO nanoparticles deposited on porous anodic alumina. J. Phys. D Appl. Phys. 2013, 46, 1–8. [Google Scholar] [CrossRef]
- Othmen, W.B.H.; Ben Ali, M.; Bouslama, W.; Elhouichet, H. Solar driven photocatalytic properties of Sm3+ doped ZnO nanocrystals. Ceram. Int. 2020, 46, 18878. [Google Scholar] [CrossRef]
- Mansour, S.A. Non-isothermal crystallization kinetics of nano-sized amorphous TiO2 prepared by facile sonochemical hydrolysis route. Ceram. Int. 2019, 45, 2893–2898. [Google Scholar] [CrossRef]
- Abed, C.; Ali, M.B.; Addad, A.; Elhouichet, H. Processing and Study of Optical and Electrical Properties of (Mg, Al) Co-Doped ZnO Thin Films Prepared by RF Magnetron Sputtering for Photovoltaic Application. Mat. Res. Bull. 2019, 110, 230–238. [Google Scholar] [CrossRef]
- Martinz, N.S.; Fernandez, J.F.; Segura, X.F.F.; Ferrer, A.S. Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. J. Hazard. Mater. B 2003, 101, 315. [Google Scholar]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. 1988, 17, 513. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-C.; Li, Y.-Y. Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater. Chem. Phys. 2009, 113, 334–337. [Google Scholar] [CrossRef]
- Barakat, N.; Kanjwal, M.; Chronakis, I.; Kim, H. Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers. J. Mol. Catal. A Chem. 2013, 366, 333. [Google Scholar] [CrossRef] [Green Version]
- Najjar, W.; Chirchi, L.; Santosb, E.; Ghorhel, A. Kinetic study of 2-nitrophenol photodegradation on Al-pillared montmorillonite doped with copper. J. Environ. Monit. 2001, 3, 697. [Google Scholar] [CrossRef]
- Pearton, S.J.; Norton, D.P.; Heo, Y.W.; Tien, L.C.; Ivill, M.P.; Li, Y.; Kang, B.S.; Ren, F.; Kelly, J.; Hebard, A.F. ZnO spintronics and nanowire devices. J. Electron. Mater. 2006, 35, 5. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Chen, J.; Chen, H.; Bao, X. ZnO nanoparticles prepared by thermal decomposition of β-cyclodextrin coated zinc acetate. Chem. Phys. Lett. 2003, 373, 22–27. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Res. Lett. 2017, 12, 143. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.D.; Wu, Z.S.; Tian, F.; Ye, B.C.; Tong, Y.B. Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J. Alloys. Compd. 2016, 676, 489–498. [Google Scholar] [CrossRef]
- Othmen, W.B.H.; Hamdi, A.; Addad, A.; Sieber, B.; Elhouichet, H.; Szunerits, S.; Boukherroub, R. Fe-doped SnO2 decorated reduced graphene oxide nanocomposite with enhanced visible light photocatalytic activity. Mater. Res. Bull. 2016, 83, 481–490. [Google Scholar] [CrossRef]
- Cižmar, T.; Kojic, V.; Rukavina, M.; Brkljacic, L.; Salamon, K.; Grcic, I.; Radetic, L.; Gajovic, A. Hydrothermal Synthesis of FeOOH and Fe2O3 Modified Self-Organizing Immobilized TiO2 Nanotubes for Photocatalytic Degradation of 1H-Benzotriazole. Catalysts 2020, 10, 1371. [Google Scholar] [CrossRef]
- Ali, M.B.; Barras, A.; Addad, A.; Sieber, B.; Elhouichet, H.; Ferid, M.; Szunerits, S.; Boukherroub, R. Co2SnO4 nanoparticles as a high performance catalyst for oxidative degradation of rhodamine B dye and pentachlorophenol by activation of peroxymonosulfate. Phys. Chem. Chem. Phys. 2017, 19, 6569. [Google Scholar] [CrossRef] [PubMed]
- Nasser, R.; Elhouichet, H.; Ferid, M. Effect of Mn doping on structural, optical and photocatalytic behaviors of hydrothermal Zn 1−x Mn x S nanocrystals. Appl. Surf. Sci. 2015, 351, 1122–1130. [Google Scholar] [CrossRef]
- Bousslama, W.; Elhouichet, H.; Férid, M. Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Optik 2017, 134, 88–98. [Google Scholar]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Lee, J.; Cho, M.H. Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C 2013, 117, 27023–27030. [Google Scholar] [CrossRef] [Green Version]
- Molefe, F.V.; Koao, L.F.; Dejene, B.F.; Swart, H.C. Phase formation of hexagonal wurtzite ZnO through decomposition of Zn (OH)2 at various growth temperatures using CBD method. Opt. Mater. 2015, 46, 292–298. [Google Scholar] [CrossRef]
- Nasser, R.; Othmen, W.B.H.; Elhouichet, H.; Férid, M. Preparation, characterization of Sb-doped ZnO nanocrystals and their excellent solar light driven photocatalytic activity. Appl. Surf. Sci. 2017, 393, 486–495. [Google Scholar] [CrossRef]
- Asadabad, M.A.; Eskandari, M.J.; Diffraction, E. Modern Electron Microscopy in Physical and Life Sciences; Milos, J., Robert, K., Eds.; Intech Open: London, UK, 2016. [Google Scholar]
- Nasser, R.; Elhouichet, H. Production of acceptor complexes in sol-gel ZnO thin films by Sb doping. J. Lumin. 2018, 196, 11–19. [Google Scholar] [CrossRef]
- Nasser, R.; Song, J.; Elhouichet, H. Epitaxial growth and properties study of p-type doped ZnO:Sb by PLD. Superlattices Microstruct. 2021, 155, 106908. [Google Scholar] [CrossRef]
- Huang, W.; Cai, J.; Hu, J.; Zhu, J.; Yang, F.; Bao, X. Atomic structures and electronic properties of Cr-doped ZnO surfaces. Chin. J. Catal. 2021, 42, 971–979. [Google Scholar] [CrossRef]
- Yılmaz, S.; Parlak, M.; Özcanc, S.; McGlynn, M.A.E.; Bacaksız, E. Structural, optical and magnetic properties of Cr doped ZnO microrods prepared by spray pyrolysis method. Appl. Surf. Sci. 2011, 257, 9293–9298. [Google Scholar] [CrossRef] [Green Version]
- Tabib, A.; Bouslama, W.; Sieber, B.; Addad, A.; Elhouichet, H.; Férid, M.; Boukherroub, R. Structural and optical properties of Na doped ZnO nanocrystals: Application to solar photocatalysis. Appl. Surf. Sci. 2017, 396, 1528–1538. [Google Scholar] [CrossRef]
- Manikandan, A.; Vijaya, J.J.; Narayanan, S.; Kennedy, L.J. Comparative investigation of structural, optical properties and dye-sensitized solar cell applications of ZnO nanostructures. J. Nanosci. Nanotechnol. 2014, 14, 2507. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, A.; Vijaya, J.J.; Ragupathi, C.; Kennedy, L.J. Optical properties and dye-sensitized solar cell applications of ZnO nanostructures prepared by microwave combustion synthesis. J. Nanosci. Nanotechnol. 2014, 14, 2584. [Google Scholar] [CrossRef] [PubMed]
- Farha, A.H.; Mansour, S.A.; Kotkata, M.F. Ga-Doped ZnO Nanostructured Powder for Cool-Nanopigment in Environment Applications. Materials 2020, 13, 5152. [Google Scholar] [CrossRef]
- Abed, C.; Fernandez, S.; Elhouichet, H. Studies of optical properties of ZnO: MgO thin films fabricated by sputtering from home-made stable oversize targets. Optik 2020, 216, 164934. [Google Scholar] [CrossRef]
- Koidl, P. Optical absorption of Co2+ in ZnO. Phys. Rev. B 1977, 15, 2493. [Google Scholar] [CrossRef]
- Ghosh, A.; Deshpande, N.G.; Gudage, Y.G.; Joshi, R.A.; Sagade, A.A.; Phase, D.M.; Sharma, R. Effect of annealing on structural and optical properties of zinc oxide thin film deposited by successive ionic layer adsorption and reaction technique. J. Alloy. Compd. 2009, 469, 56. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4, 4596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaimy, K.B.; Safeena, V.P.; Ghosh, S.; Hebalkarb, N.Y.; Warrier, K.G.K. Photocatalytic activity enhancement in doped titanium dioxide by crystal defects. Dalton Trans. 2012, 41, 4824. [Google Scholar]
- Umar, A.; Kumar, R.; Kumar, G.; Algarni, H.; Kim, S. Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. J. Alloy. Compd. 2015, 648, 46–52. [Google Scholar] [CrossRef]
- Kanchana, S.; Chithra, M.J.; Ernest, S.; Pushpanathan, K. Violet emission from Fe doped ZnO nanoparticles synthesized by precipitation method. J. Lumin. 2016, 176, 6–14. [Google Scholar] [CrossRef]
- Kleinwechter, H.; Janzen, C.; Knipping, J.; Wiggers, H.; Roth, P. Formation and properties of ZnO nano-particles from gas phase synthesis processes. J. Mater. Sci. 2002, 37, 4349. [Google Scholar] [CrossRef]
- Chen, J.; Feng, Z.C.; Ying, P.L.; Li, M.J.; Han, B.; Li, C. The visible luminescent characteristics of ZnO supported on SiO2 powder. Phys. Chem. Chem. Phys. 2004, 6, 4473. [Google Scholar] [CrossRef]
- Mehrotra, K.; Yablonsky, G.S.; Ray, A.K. Macro kinetic studies for photocatalytic degradation of benzoic acid in immobilized systems. Chemosphere 2005, 60, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Butalid, R.J.B.; Cristobal, A.P.S.; Montallana, A.D.S.; Vasquez, M.R., Jr. Stability of TiO2-coated ZnO photocatalytic thin films for photodegradation of methylene blue. J. Vac. Sci. Technol. B 2020, 38, 062205. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Alghamdi, A.A.; Al-Zaqri, N.; Alanazi, H.S.; Alsyahi, A.A.; el Marghany, A.; Ahmad, N. Facile one-pot green synthesis of Ag–ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties. Sci. Rep. 2020, 10, 20229. [Google Scholar] [CrossRef] [PubMed]
- Sunaina; Devi, S.; Nishanthi, S.T.; Mehta, S.K.; Ganguli, A.K.; Jha, M. Surface photosensitization of ZnO by ZnS to enhance the photodegradation efficiency for organic pollutants. SN Appl. Sci. 2021, 3, 689. [Google Scholar] [CrossRef]
Sample | Weight Concentration of Cr III OAc Hydroxide and Zinc Acetate Dihydrate in Percentage (%) | Photocatalytic Reaction: Methyl Orange (MO) |
---|---|---|
ZnO-Cr0 | 0 | 165 mL from 10 ppm aqueous of methyl orange + 3.3 mg from each sample Then stirred for 10 min followed by 5 min sonication until adsorption-desorption equilibrium. A 3 mL of each solution was filtered than examined each 10 min |
ZnO-Cr1 | 1 | |
ZnO-Cr3 | 3 | |
ZnO-Cr5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
H. Alkallas, F.; Ben Gouider Trabelsi, A.; Nasser, R.; Fernandez, S.; Song, J.-M.; Elhouichet, H. Promising Cr-Doped ZnO Nanorods for Photocatalytic Degradation Facing Pollution. Appl. Sci. 2022, 12, 34. https://doi.org/10.3390/app12010034
H. Alkallas F, Ben Gouider Trabelsi A, Nasser R, Fernandez S, Song J-M, Elhouichet H. Promising Cr-Doped ZnO Nanorods for Photocatalytic Degradation Facing Pollution. Applied Sciences. 2022; 12(1):34. https://doi.org/10.3390/app12010034
Chicago/Turabian StyleH. Alkallas, Fatemah., Amira Ben Gouider Trabelsi, Ramzi Nasser, Susana Fernandez, Ji-Ming Song, and Habib Elhouichet. 2022. "Promising Cr-Doped ZnO Nanorods for Photocatalytic Degradation Facing Pollution" Applied Sciences 12, no. 1: 34. https://doi.org/10.3390/app12010034
APA StyleH. Alkallas, F., Ben Gouider Trabelsi, A., Nasser, R., Fernandez, S., Song, J.-M., & Elhouichet, H. (2022). Promising Cr-Doped ZnO Nanorods for Photocatalytic Degradation Facing Pollution. Applied Sciences, 12(1), 34. https://doi.org/10.3390/app12010034