Study of the Hemodynamics Effects of an Isolated Systolic Hypertension (ISH) Condition on Cerebral Aneurysms Models, Using FSI Simulations
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Models and Properties
2.2. Boundary Conditions
2.3. Numerical Methods and Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Brisman, J.L.; Song, J.K.; Newell, D.W. Cerebral Aneurysms. N. Engl. J. Med. 2006, 355, 928–939. [Google Scholar] [CrossRef] [Green Version]
- Cebral, J.R.; Castro, M.A.; Burgess, J.E.; Pergolizzi, R.S.; Sheridan, M.J.; Putman, C.M. Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models. Am. J. Neuroradiol. 2005, 26, 2550–2559. [Google Scholar]
- Valencia, A.A.; Guzmán, A.M.; Finol, E.A.; Amon, C.H. Blood Flow Dynamics in Saccular Aneurysm Models of the Basilar Artery. J. Biomech. Eng. 2006, 128, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Natarajan, S.K.; Tremmel, M.; Ma, D.; Mocco, J.; Hopkins, L.N.; Siddiqui, A.H.; Levy, E.I.; Meng, H. Hemodynamic–Morphologic Discriminants for Intracranial Aneurysm Rupture. Stroke 2011, 42, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Fan, J.; Wang, Y.; Li, H.; Wang, S.; Yang, X.; Zhang, Y. Morphologic and Hemodynamic Analysis in the Patients with Multiple Intracranial Aneurysms: Ruptured versus Unruptured. PLoS ONE 2015, 10, e0132494. [Google Scholar] [CrossRef]
- Chung, B.; Cebral, J.R. CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges. Ann. Biomed. Eng. 2015, 43, 122–138. [Google Scholar] [CrossRef]
- Tan, F.P.P.; Torii, R.; Borghi, A.; Mohiaddin, R.H.; Wood, N.B.; Xu, X.Y. Fluid-Structure Interaction Analysis of Wall Stress and Flow Patterns in a Thoracic Aortic Aneurysm. Int. J. Appl. Mech. 2009, 1, 179–199. [Google Scholar] [CrossRef]
- Tada, Y.; Wada, K.; Shimada, K.; Makino, H.; Liang, E.I.; Murakami, S.; Kudo, M.; Kitazato, K.T.; Nagahiro, S.; Hashimoto, T. Roles of Hypertension in the Rupture of Intracranial Aneurysms. Stroke 2014, 45, 579–586. [Google Scholar] [CrossRef] [Green Version]
- McCormick, W.F.; Schmalstieg, E.J. The Relationship of Arterial Hypertension to Intracranial Aneurysms. Arch. Neurol. 1977, 34, 285–287. [Google Scholar] [CrossRef]
- Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T.E. Fluid–Structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures. Comput. Mech. 2006, 38, 482–490. [Google Scholar] [CrossRef]
- Bavishi, C.; Goel, S.; Messerli, F.H. Isolated Systolic Hypertension: An Update After SPRINT. Am. J. Med. 2016, 129, 1251–1258. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Yano, Y.; Cho, S.M.J.; Park, J.H.; Park, S.; Lloyd-Jones, D.M.; Kim, H.C. Cardiovascular Risk of Isolated Systolic or Diastolic Hypertension in Young Adults. Circulation 2020, 141, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Grebla, R.C.; Rodriguez, C.J.; Borrell, L.N.; Pickering, T.G. Prevalence and Determinants of Isolated Systolic Hypertension among Young Adults: The 1999–2004 US National Health And Nutrition Examination Survey. J. Hypertens. 2010, 28, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Rodriguez, C.J.; Wang, K. Prevalence and Trends of Isolated Systolic Hypertension among Untreated Adults in the United States. J. Am. Soc. Hypertens. 2015, 9, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Falkner, B. Recent Clinical and Translational Advances in Pediatric Hypertension. Hypertension 2015, 65, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Valencia, A.; Morales, H.; Rivera, R.; Bravo, E.; Galvez, M. Blood Flow Dynamics in Patient-Specific Cerebral Aneurysm Models: The Relationship between Wall Shear Stress and Aneurysm Area Index. Med. Eng. Phys. 2008, 30, 329–340. [Google Scholar] [CrossRef]
- Papanastasiou, T.C. Flows of Materials with Yield. J. Rheol. 1987, 31, 385–404. [Google Scholar] [CrossRef]
- Neofytou, P.; Drikakis, D. Effects of Blood Models on Flows through a Stenosis. Int. J. Numer. Methods Fluids 2003, 43, 597–635. [Google Scholar] [CrossRef]
- Jahangiri, M.; Saghafian, M.; Sadeghi, M.R. Numerical Study of Turbulent Pulsatile Blood Flow through Stenosed Artery Using Fluid-Solid Interaction. Comput. Math Methods Med. 2015, 2015, 515613. [Google Scholar] [CrossRef] [Green Version]
- Valencia, A.; Contente, A.; Ignat, M.; Mura, J.; Bravo, E.; Rivera, R.; Sordo, J. Mechanical Test of Human Cerebral Aneurysm Specimens Obtained from Surgical Clipping. J. Mech. Med. Biol. 2015, 15, 1550075. [Google Scholar] [CrossRef]
- Perrini, P.; Montemurro, N.; Caniglia, M.; Lazzarotti, G.; Benedetto, N. Wrapping of Intracranial Aneurysms: Single-Center Series and Systematic Review of the Literature. Br. J. Neurosurg. 2015, 29, 785–791. [Google Scholar] [CrossRef]
- Valencia, A.; Burdiles, P.; Ignat, M.; Mura, J.; Bravo, E.; Rivera, R.; Sordo, J. Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties. Comput. Math. Methods Med. 2013, 2013, 293128. [Google Scholar] [CrossRef]
- Amigo, N.; Valencia, A. Determining Significant Morphological and Hemodynamic Parameters to Assess the Rupture Risk of Cerebral Aneurysms. J. Med. Biol. Eng. 2019, 39, 329–335. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Nakagawa, K.; Smith, W.S. Evaluation and Management of Increased Intracranial Pressure. Contin. Minneap. Minn. 2011, 17, 1077–1093. [Google Scholar] [CrossRef] [PubMed]
- Pinto, V.L.; Tadi, P.; Adeyinka, A. Increased Intracranial Pressure. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Rangel-Castillo, L.; Gopinath, S.; Robertson, C.S. Management of Intracranial Hypertension. Neurol. Clin. 2008, 26, 521–541. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, Q.; Wu, J.; Chen, X.; Li, M.; Li, Z.; Yang, S.; Guo, R.; Gao, B.; Cao, Y.; et al. Hemodynamic Characteristics Associated with Thinner Regions of Intracranial Aneurysm Wall. J. Clin. Neurosci. 2019, 67, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Perera, R.; Isoda, H.; Ishiguro, K.; Mizuno, T.; Takehara, Y.; Terada, M.; Tanoi, C.; Naito, T.; Sakahara, H.; Hiramatsu, H.; et al. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics. Magn. Reson. Med. Sci. 2020, 19, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Berg, P.; Saalfeld, S.; Voß, S.; Beuing, O.; Janiga, G. A Review on the Reliability of Hemodynamic Modeling in Intracranial Aneurysms: Why Computational Fluid Dynamics Alone Cannot Solve the Equation. Neurosurg. Focus 2019, 47, E15. [Google Scholar] [CrossRef] [Green Version]
- Wüstenhagen, C.; John, K.; Langner, S.; Brede, M.; Grundmann, S.; Bruschewski, M. CFD Validation Using In-Vitro MRI Velocity Data–Methods for Data Matching and CFD Error Quantification. Comput. Biol. Med. 2021, 131, 104230. [Google Scholar] [CrossRef]
- Markl, M.; Frydrychowicz, A.; Kozerke, S.; Hope, M.; Wieben, O. 4D Flow MRI. J. Magn. Reson. Imaging 2012, 36, 1015–1036. [Google Scholar] [CrossRef]
- Cebral, J.R.; Pergolizzi, R.S.; Putman, C.M. Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Qualitative Comparison with Cerebral Angiography. Acad. Radiol. 2007, 14, 804–813. [Google Scholar] [CrossRef]
- Rayz, V.L.; Boussel, L.; Acevedo-Bolton, G.; Martin, A.J.; Young, W.L.; Lawton, M.T.; Higashida, R.; Saloner, D. Numerical Simulations of Flow in Cerebral Aneurysms: Comparison of CFD Results and in Vivo MRI Measurements. J. Biomech. Eng. 2008, 130, 051011. [Google Scholar] [CrossRef] [PubMed]
A | Rupture | Location | Type | Age |
---|---|---|---|---|
1 | Yes | ICA | Lateral | 80 |
2 | Yes | ICA | Terminal | 45 |
3 | Yes | ICA | Lat-Bif. | 46 |
4 | No | VBA | Lateral | 52 |
5 | No | MCA | Terminal | 59 |
6 | No | ICA | Lat-Bif. | 52 |
A | Neck [mm] | Width [mm] | Height [mm] | Volume [mm3] |
---|---|---|---|---|
1 | 4.54 | 6.93 | 8.40 | 231.21 |
2 | 4.09 | 4.83 | 4.74 | 41.66 |
3 | 2.88 | 3.31 | 7.21 | 97.30 |
4 | 2.28 | 4.41 | 3.55 | 20.77 |
5 | 5.96 | 5.90 | 4.45 | 53.90 |
6 | 4.82 | 5.49 | 4.46 | 107.32 |
Condition | |||
---|---|---|---|
Normal | 1.40 × 1010 | 1.66 × 109 | 2.32 × 10−10 |
Hypertension | 1.80 × 109 | 2.00 × 1010 | 9.50 × 10−9 |
ISH | 2.00 × 109 | 2.00 × 1010 | 9.50 × 10−9 |
A | Skewness (Maximum) | Orthogonal Quality (Minimum) | Aspect Ratio (Maximum) |
---|---|---|---|
1 | 0.81695 | 0.18305 | 8.80420 |
2 | 0.86274 | 0.10972 | 11.83121 |
3 | 0.85771 | 0.14229 | 9.69181 |
4 | 0.82012 | 0.17988 | 11.16402 |
5 | 0.83572 | 0.12418 | 9.79063 |
6 | 0.83613 | 0.16387 | 12.71124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barahona, J.; Valencia, A.; Torres, M. Study of the Hemodynamics Effects of an Isolated Systolic Hypertension (ISH) Condition on Cerebral Aneurysms Models, Using FSI Simulations. Appl. Sci. 2021, 11, 2595. https://doi.org/10.3390/app11062595
Barahona J, Valencia A, Torres M. Study of the Hemodynamics Effects of an Isolated Systolic Hypertension (ISH) Condition on Cerebral Aneurysms Models, Using FSI Simulations. Applied Sciences. 2021; 11(6):2595. https://doi.org/10.3390/app11062595
Chicago/Turabian StyleBarahona, José, Alvaro Valencia, and María Torres. 2021. "Study of the Hemodynamics Effects of an Isolated Systolic Hypertension (ISH) Condition on Cerebral Aneurysms Models, Using FSI Simulations" Applied Sciences 11, no. 6: 2595. https://doi.org/10.3390/app11062595
APA StyleBarahona, J., Valencia, A., & Torres, M. (2021). Study of the Hemodynamics Effects of an Isolated Systolic Hypertension (ISH) Condition on Cerebral Aneurysms Models, Using FSI Simulations. Applied Sciences, 11(6), 2595. https://doi.org/10.3390/app11062595