Dental Implant Site Drilling and Induced Morphological Changes Correlated with Temperature in Pig’s Rib Used as the Human Jaw Model
Abstract
:1. Introduction
2. Material and Methods
- BEGO Semados® RS (BEGO Implant Systems GmbH & Co., Bremen, Germany)—drills: pilot, 𝜙2.5, and final, 𝜙3.0;
- BIOMET 3i® T3 (Biomet 3i LLC, Palm Beach Gardens, FL, USA)—drills: pilot, 𝜙2.3, and final, 𝜙2.75); and
- NEO BIOTECH® IS-III Active (Neo Biotech Co., Ltd., Seoul, Korea)—drills: pilot, 𝜙2.2, and final, 𝜙2.9.
- 0.9% NaCl solution (temperature approx. 20 °C);
- 0.9% NaCl solution (temperature approx. 3 °C); and
- without any cooling liquid supplementation.
- 800 rpm;
- 1200 rpm; and
- 1500 rpm.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forshaw, R.J. The practice of dentistry in ancient Egypt. Br. Dent. J. 2009, 206, 481–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, R.A.; Adell, R. Temperatures during drilling for the placement of implants using the osseointegration technique. J. Oral. Maxillofac. Surg. 1986, 44, 4–7. [Google Scholar] [CrossRef]
- Marheineke, N.; Scherer, U.; Rücker, M.; von See, C.; Rahlf, B.; Gellrich, N.-C.; Stoetzer, M. Evaluation of accuracy in implant site preparation performed in single or multi-step drilling procedures. Clin. Oral. Investig. 2018, 22, 2057–2067. [Google Scholar] [CrossRef]
- Pascoletti, G.; di Chio, G.; Marmotti, A.; Boero Baroncelli, A.; Costa, P.; Tancredi Lugas, A.; Serino, G. A novel technique for testing osteointegration in load-bearing conditions. WIT Trans. Eng. Sci. 2019, 124, 187–194. [Google Scholar]
- Zanetti, E.M.; Ciaramella, S.; Calì, M.; Pascoletti, G.; Martorelli, M.; Asero, R.; Watts, D.C. Modal analysis for implant stability assessment:Sensitivity of this methodology for differentimplant designs. Dent. Mater. 2018, 34, 1235–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, G.; Zigman, T.; Davila, S.; Udilljak, T.; Staroveski, T.; Brezak, D.; Babic, S. Cortical bone drilling and thermal osteonecrosis. Clin. Biomech. 2012, 27, 313–325. [Google Scholar] [CrossRef]
- Pearce, A.I.; Richards, R.G.; Milz, S.; Schneider, E.; Pearce, S.G. Animal models for implant biomaterial research in bone: A review. Eur. Cell. Mater. 2007, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mints, D.; Elias, C.; Funkenbusch, P.; Meirelles, L. Integrity of Implant Surface Modifications After Insertion. Int. J. Oral. Maxillofac. Implant 2014, 29, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Fiore, A.; Sivolella, S.; Stocco, E.; Favero, V.; Stellini, E. Experimental Analysis of Temperature Differences during Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique. J. Oral Implantol. 2018, 44, 46–50. [Google Scholar] [CrossRef]
- Kosior, P.; Kuropka, P.; Janeczek, M.; Mikulewicz, M.; Zakrzewski, W.; Dobrzyński, M. The Influence of Various Preparation Parameters on the Histological Image of Bone Tissue during Implant Bed Preparation—An In Vitro Study. Appl. Sci. 2021, 11, 1916. [Google Scholar] [CrossRef]
- Marković, A.; Lazić, Z.; Mišić, T.; Šćepanović, M.; Todorović, A.; Thakare, K.; Janjić, B.; Vlahović, Z.; Glišić, M. Effect of Surgical Drill Guide and Irrigans Temperature on Thermal Bone Changes during Drilling Implant Sites—Thermographic Analysis on Bovine Ribs. Vojnosanit. Pregl. 2016, 73, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-J.; Yoo, J.; Kim, Y.-S.; Shin, S.-W. Temperature change in pig rib bone during implant site preparation by low-speed drilling. J. Appl. Oral Sci. 2010, 5, 522–527. [Google Scholar] [CrossRef] [Green Version]
- Bachus, K.N.; Rondina, M.T.; Hutchinson, D.T. The effects of drilling force on cortical temperatures and their duration: An in vitro study. Med. Eng. Phys. 2000, 22, 685–691. [Google Scholar] [CrossRef]
- Kirstein, K.; Dobrzyński, M.; Kosior, P.; Chrószcz, A.; Dudek, K.; Fita, K.; Parulska, O.; Rybak, Z.; Skalec, A.; Szklarz, M.; et al. Infrared thermographic assessment of cooling effectiveness in selected dental implant sites. Biomed. Res. Int. 2016, 2016, 1879468. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Pandey, P.M.; Gupta, R.K.; Mridha, A.R. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone. Proc. Inst. Mech. Eng. H 2017, 231, 189–196. [Google Scholar] [CrossRef]
- Eriksson, A.R.; Albrektsson, T. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. J. Prosthet. Dent. 1983, 50, 101–107. [Google Scholar] [CrossRef]
- Bagci, E.; Ozcelik, B. Effects of different cooling conditions on twist drill temperature. Int. J. Adv. Manuf. Technol. 2007, 34, 867–877. [Google Scholar] [CrossRef]
- Kirschner, H.; Meyer, W. Development of an internal cooling mechanism for surgical drills. Dtsch. Zahnarztl. Z. 1975, 30, 436–438. [Google Scholar] [PubMed]
- Sener, B.C.; Dergin, G.; Gursoy, B.; Kelesoglu, E.; Slih, I. Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin. Oral Implants Res. 2009, 20, 294–298. [Google Scholar] [CrossRef]
- Kalidindi, V. Optimization of Drill Design and Coolant Systems during Dental Implant Surgery. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2004. [Google Scholar]
- Sindel, A.; Dereci, Ö.; Hatipoğlu, M.; Altay, M.-A.; Özalp, Ö.; Öztürk, A. The effects of irrigation volume to the heat generation during implant surgery. Med. Oral. Patol. Oral Cir. Bucal 2017, 22, e506–e511. [Google Scholar] [CrossRef]
- Mercan, U.; Sumer, M.; Kaya, O.A.; Keskiner, I.; Meral, D.G.; Erdogan, O. An In-vitro study on thermal changes during implant drilling with different irrigation volumes. Niger J. Clin. Pract. 2019, 22, 350–354. [Google Scholar]
- Thompson, H.C. Effect of drilling on bone. J. Oral Surg. 1958, 16, 22–30. [Google Scholar] [PubMed]
- Augustin, G.; Davila, S.; Mihoci, K.; Udiljak, T.; Vedrina, D.S.; Antabak, A. Thermal osteonecrosis and bone drilling parameters revisited. Arch. Orthop. Trauma Surg. 2008, 128, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, O.; Yu, W.; Choi, M.Y.; Kyung, H.M. Monitoring of bone temperature during osseous preparation for orthodontic micro-screw implants: Effect of motor speed and pressure. Key Eng. Mater. 2006, 321–322, 1044–1047. [Google Scholar] [CrossRef]
- Sharawy, M.; Misch, C.E.; Weller, N.; Tehemar, S. Heat Generation during Implant Drilling: The Significance of Motor Speed. J. Oral Maxillofac. Surg. 2002, 60, 1160–1169. [Google Scholar] [CrossRef] [Green Version]
- Hobkirk, J.A.; Rusiniak, K. Investigation of variable factors in drilling bone. J. Oral Surg. 1977, 35, 968–973. [Google Scholar] [PubMed]
- Brisman, D.L. The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int. J. Oral Maxillofac. Implants 1996, 11, 35–37. [Google Scholar]
- Brånemark, P.I. Osseointegration and its experimental background. J. Prosthet. Dent. 1983, 50, 3. [Google Scholar] [CrossRef]
Rib Sample No. | Implantation System | Cooling Requirements |
---|---|---|
1 | BEGO Implant Systems | without cooling |
2 | BEGO Implant Systems | with cooling (20 °C) |
3 | BEGO Implant Systems | with cooling (3 °C) |
4 | NEO BIOTECH | without cooling |
5 | NEO BIOTECH | with cooling (20 °C) |
6 | NEO BIOTECH | with cooling (3 °C) |
7 | BIOMET 3i | without cooling |
8 | BIOMET 3i | with cooling (20 °C) |
9 | BIOMET 3i | with cooling (3 °C) |
Measurement | p-Value | r-Value |
---|---|---|
apex/800/without cooling | 0.0004 | 0.95 |
apex/800/with cooling | 0.00006 | 0.8 |
Apex/1200/without cooling | 0.00005 | 0.983 |
apex/1200/with cooling | 0.0006 | 0.731 |
apex/1500/without cooling | 0.0007 | 0.929 |
apex 1500/with cooling | 0.0007 | 0.724 |
side/800/without cooling | 0.0002 | 0.967 |
side/800/with cooling | 0.0003 | 0.76 |
side/1200/without cooling | 0.0007 | 0.933 |
side/1200/with cooling | 0.077 | 0.428 |
side/1500/without cooling | 0.0004 | 0.946 |
side/1500/with cooling | 0.00003 | 0.901 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirstein, K.; Horochowska, M.; Jagiełło, J.; Bubak, J.; Chrószcz, A.; Kuropka, P.; Dobrzyński, M.; Poradowski, D.; Michałek, M.; Borawski, W.; et al. Dental Implant Site Drilling and Induced Morphological Changes Correlated with Temperature in Pig’s Rib Used as the Human Jaw Model. Appl. Sci. 2021, 11, 2493. https://doi.org/10.3390/app11062493
Kirstein K, Horochowska M, Jagiełło J, Bubak J, Chrószcz A, Kuropka P, Dobrzyński M, Poradowski D, Michałek M, Borawski W, et al. Dental Implant Site Drilling and Induced Morphological Changes Correlated with Temperature in Pig’s Rib Used as the Human Jaw Model. Applied Sciences. 2021; 11(6):2493. https://doi.org/10.3390/app11062493
Chicago/Turabian StyleKirstein, Karol, Michalina Horochowska, Jacek Jagiełło, Joanna Bubak, Aleksander Chrószcz, Piotr Kuropka, Maciej Dobrzyński, Dominik Poradowski, Marcin Michałek, Wojciech Borawski, and et al. 2021. "Dental Implant Site Drilling and Induced Morphological Changes Correlated with Temperature in Pig’s Rib Used as the Human Jaw Model" Applied Sciences 11, no. 6: 2493. https://doi.org/10.3390/app11062493
APA StyleKirstein, K., Horochowska, M., Jagiełło, J., Bubak, J., Chrószcz, A., Kuropka, P., Dobrzyński, M., Poradowski, D., Michałek, M., Borawski, W., & Janeczek, M. (2021). Dental Implant Site Drilling and Induced Morphological Changes Correlated with Temperature in Pig’s Rib Used as the Human Jaw Model. Applied Sciences, 11(6), 2493. https://doi.org/10.3390/app11062493