Effect of Citric Acid on Color Changes of Calcium Silicate-Based Cements an In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Material Discoloration Measurement
2.3. Statistical Analysis
3. Results
3.1. Color Changes Caused by 10% and 40% CA
3.2. Color Changes Caused by 15% EDTA
3.3. Color Changes Caused by 2% CHX
3.4. Color Changes Caused by 2% NaOCl
3.5. Color Changes Caused by 0.9% NaCl
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paula, A.; Carrilho, E.; Laranjo, M.; Abrantes, A.M.; Casalta-Lopes, J.; Botelho, M.F.; Marto, C.M.; Ferreira, M.M. Direct pulp capping: Which is the most effective biomaterial? A retrospective clinical study. Materials 2019, 12, 3382. [Google Scholar] [CrossRef]
- Camilleri, J.; Formosa, L.; Damidot, D. The setting characteristics of MTA Plus in different environmental conditions. Int. Endod. J. 2013, 46, 831–840. [Google Scholar] [CrossRef]
- Reszka, P.; Nowicka, A.; Lipski, M.; Dura, W.; Droździk, A.; Woźniak, K. A comparative chemical study of calcium silicate-containing and epoxy resin-based root canal sealers. Biomed. Res. Int. 2016, 2016, 9808432. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.J.; Martins, J.; Diogo, P.; Sequeira, D.; Ramos, J.C.; Diogenes, A.; Santos, J.M. Does Apical Papilla Survive and Develop in Apical Periodontitis Presence after Regenerative Endodontic Procedures? Appl. Sci. 2019, 9, 3942. [Google Scholar] [CrossRef]
- Dammaschke, T.; Nowicka, A.; Lipski, M.; Ricucci, D. Histological evaluation of hard tissue formation after direct pulp capping with a fast-setting mineral trioxide aggregate [RetroMTA] in humans. Clin. Oral. Investig. 2019, 23, 4289–4299. [Google Scholar] [CrossRef]
- Fagogeni, I.; Metlerska, J.; Lipski, M.; Falgowski, T.; Maciej, G.; Nowicka, A. Materials used in regenerative endodontic procedures and their impact on tooth discoloration. J. Oral. Sci. 2019, 61, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Możyńska, J.; Metlerski, M.; Lipski, M.; Nowicka, A. Tooth discoloration induced by different calcium silicate-based cements: A systematic review of in vitro studies. J. Endod. 2017, 43, 1593–1601. [Google Scholar] [CrossRef]
- Palma, P.J.; Marques, J.A.; Falacho, R.I.; Correia, E.; Vinagre, A.; Santos, J.M.; Ramos, J.C. Six-Month Color Stability Assessment of Two Calcium Silicate-Based Cements Used in Regenerative Endodontic Procedures. J. Funct. Biomater. 2019, 10, 14. [Google Scholar] [CrossRef]
- Palma, P.J.; Marques, J.A.; Santos, J.; Falacho, R.I.; Sequeira, D.; Diogo, P.; Caramelo, F.; Ramos, J.C.; Santos, J.M. Tooth Discoloration after Regenerative Endodontic Procedures with Calcium Silicate-Based Cements—An Ex Vivo Study. Appl. Sci. 2020, 10, 5793. [Google Scholar] [CrossRef]
- Lenherr, P.; Allgayer, N.; Weiger, R.; Filippi, A.; Attin, T.; Krastl, G. Tooth discoloration induced by endodontic materials: A laboratory study. Int. Endod. J. 2012, 45, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, J.; Borg, J.; Damidot, D.; Salvadori, E.; Pilecki, P.; Zaslansky, P.; Darvell, B.W. Colour and chemical stability of bismuth oxide in dental materials with solutions used in routine clinical practice. PLoS ONE 2020, 11, 15–e0240634. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Abbott, P.V. Discolouration potential of endodontic procedures and materials: A review. Int. Endod. J. 2012, 45, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Shin, Y.S.; Lee, H.S.; Kim, S.O.; Shin, Y.; Jung, I.Y.; Song, J.S. Color changes of teeth after treatment with various mineral trioxide aggregate–based materials: An ex vivo study. J. Endod. 2015, 41, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Vallés, M.; Mercadé, M.; Duran-Sindreu, F.; Bourdelande, J.L.; Roig, M. Color stability of white mineral trioxide aggregate. Clin. Oral. Investig. 2013, 17, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Marciano, M.A.; Duarte, M.A.; Camilleri, J. Dental discoloration caused by bismuth oxide in MTA in the presence of sodium hypochlorite. Clin. Oral. Investig. 2015, 19, 2201–2209. [Google Scholar] [CrossRef] [PubMed]
- Lipski, M.; Nowicka, A.; Kot, K.; Postek-Stefańska, L.; Wysoczańska-Jankowicz, I.; Borkowski, L.; Andersz, P.; Jarząbek, A.; Grocholewicz, K.; Sobolewska, E.; et al. Factors affecting the outcomes of direct pulp capping using Biodentine. Clin. Oral. Investig. 2018, 22, 2021–2029. [Google Scholar] [CrossRef]
- Estrela, C.; Holland, R.; de Estrela, C.R.A.; Alencar, A.H.G.; Sousa-Neto, M.D.; Pecora, J.D. Characterization of successful root canal treatment. Braz. Dent. J. 2014, 25, 3–11. [Google Scholar] [CrossRef]
- Darcey, J.; Jawad, S.; Taylor, C.; Roudsari, R.V.; Hunter, M. Modern Endodontic Principles Part 4: Irrigation. Dent. Update 2016, 43, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.K.; Desmeules, M.; Cielecki, M.; Dabbagh, B.; Ferraz Dos Santos, B. Longitudinal cohort study of regenerative endodontic treatment for immature necro permanent teeth. J. Endod. 2017, 43, 395–400. [Google Scholar] [CrossRef]
- Kim, S.G.; Malek, M.; Sigurdsson, A.; Lin, L.M.; Kahler, B. Regenerative endodontics: A comprehensive review. Int. Endod. J. 2018, 51, 1367–1388. [Google Scholar] [CrossRef] [PubMed]
- Ivica, A.; Zehnder, M.; Mateos, J.M.; Ghayor, C.; Weber, F.E. Biomimetic conditioning of human dentin using citric acid. J. Endod. 2019, 45, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.; Yang, M.; Kim, J. Release of TGF-β1 into root canals with various final irrigants in regenerative endodontics: An in vitro analysis. Int. Endod. J. 2018, 51, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Arepally, G.M. Anticoagulation techniques in apheresis: From heparin to citrate and beyond. J. Clin. Apher. 2012, 27, 117–125. [Google Scholar] [CrossRef]
- Martínez, A.; Vargas, R.; Galano, A. Citric acid: A promising copper scavenger. Comput. Theor. Chem. 2018, 1133, 47–50. [Google Scholar] [CrossRef]
- Eldeniz, A.U.; Erdemir, A.; Belli, S. Effect of EDTA and citric acid solutions on the microhardness and the roughness of human root canal dentin. J. Endod. 2005, 31, 107–110. [Google Scholar] [CrossRef]
- Camilleri, J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J. Endod. 2014, 40, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Keskin, C.; Demiryurek, E.O.; Ozyurek, T. Color stabilities of calcium silicate-based materials in contact with different irrigation solutions. J. Endod. 2015, 41, 409–411. [Google Scholar] [CrossRef]
- Felman, D.; Parashos, P. Coronal tooth discoloration and white mineral trioxide aggregate. J. Endod. 2013, 39, 484–487. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Illumination. Recommendations on Uniform Color Spaces, Color–Difference Equations, Psychometric Color Terms; Bureau Central de la CIE: Paris, France, 1978; Volume 1913. [Google Scholar]
- Kastiukas, G.; Zhou, X.; Castro-Gomes, J.; Huang, S.; Saafi, M. Effects of lactic and citric acid on early-age engineering properties of Portland/calcium aluminate blended cements. Constr. Build. Mater. 2015, 101, 389–395. [Google Scholar] [CrossRef]
- Agrafioti, A.; Tzimpoulas, N.; Chatzitheodoridis, E.; Kontakiotis, E.G. Compartive evaluation of sealing ability and microstructure of MTA and Biodentine after exposure to different environments. Clin. Oral. Investig. 2016, 20, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.V.; da Silva, G.R.; Souza, G.L.; Magalhães, T.E.A.; Barbosa, G.L.R.; Turrioni, A.P.; Moura, C.C.G. A laboratory evaluation of cell viability, radiopacity and tooth discoloration induced by regenerative endodontic materials. Int. Endod. J. 2020, 53, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.Y.; Seo, M.S. Comparative evaluation of volumetric changes of three different retrograde calcium silicate materials placed under different pH condititions. BMC Oral Health 2020, 20, 330. [Google Scholar] [CrossRef] [PubMed]
- Ashofteh Yazdi, K.; Ghabraei, S.; Bolhari, B.; Kafili, M.; Meraji, N.; Nekoofar, M.H.; Dummer, P.M.H. Microstructure and chemical analysis of four calcium silicate-based cements in different environmental conditions. Clin. Oral Invest. 2019, 23, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.J.; Carvalho, N.K.; Zanon, M.; Senna, P.M.; DE-Deus, G.; Zuolo, M.L.; Zaia, A.A. Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement. Braz. Oral Res. 2016, 30, e84. [Google Scholar] [CrossRef]
- Aguiar, B.A.; Frota, L.M.A.; Taguatinga, D.T.; Vivan, R.R.; Camilleri, J.; Duarte, M.A.H.; de Vasconcelos, B.C. Influence of ultrasonic agitation on bond strength, marginal adaptation, and tooth discoloration provided by three coronary barrier endodontic materials. Clin. Oral. Investig. 2019, 23, 4113–4122. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.A.H.; Minotti, P.G.; Rodrigues, C.T.; Zapata, R.O.; Bramante, C.M.; Tanomaru Filho, M.; Vivan, R.R.; Gomes de Moraes, I.; Bombarda de Andrade, F. Effect of different radiopacifying agents on the physicochemical properties of white Portland cement and white mineral trioxide aggregate. J. Endod. 2012, 38, 394–397. [Google Scholar] [CrossRef]
- Amoroso-Silva, P.A.; Marciano, M.A.; Guimaraes, B.M.; Duarte, M.A.H.; Sanson, A.F.; de Moraes, I.G. Apical adaptation, sealing ability and push–out bond strength of five root–end filling materials. Braz. Oral Res. 2014, 28, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cintra, L.T.A.; Benetti, F.; de Azevedo Queiroz, Í.O.; de Araújo Lopes, J.M.; Penha de Oliveira, S.H.; Sivieri Araújo, G.; Gomes-Filho, J.E. Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA material. J. Endod. 2017, 43, 774–778. [Google Scholar] [CrossRef]
- Camilleri, J. Staining potential of Neo MTA Plus, MTA Plus, and Biodentine used for pulpotomy procedures. J. Endod. 2015, 41, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Voveraityte, V.; Gleizniene, S.; Lodiene, G.; Grabliauskiene, Z.; Machiulskiene, V. Spectrophotometric analysis of tooth discolouration induced by mineral trioxide aggregate after final irrigation with sodium hypochlorite: An in vitro study. Aust. Endod. J. 2017, 43, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Sobhnamayan, F.; Adl, A.; Ghanbaran, S. Effect of different irrigation solutions on the colour stability of three calcium silicate–based materials. J. Dent. Biomater. 2017, 4, 373–378. [Google Scholar]
Material | Manufacturer | Ingredients | Preparation Procedure |
---|---|---|---|
ProRoot MTA | Dentsply, Tulsa, OK, USA | tricalcium silicate, dicalcium silicate, tricalcium aluminate, tetracalciumaluminoferrite, free calcium oxide, and bismuth oxide | Mix powder + liquid ratio 1:3 (mix manually) |
Biodentine | Septodont, Saint Maur-des-Fossés, France | powder: tricalcium silicate, calcium carbonate and oxide filler, iron oxide shade, and zirconium oxide liquid: calcium chloride as accelerator, hydrosoluble polymer water-reducing agent, water | 0.7 g capsule of powder + 5 drops of liquid mix 30 s; 4000–4200 rpm (mixing device) |
MTA Plus | Avalon Biomed Inc, by Prevest Denpro Limited, Jammu, India | powder: tricalcium silicate, dicalcium silicate, bismuth oxide, calcium sulfate, and silica liquid: hydrated polymer gel | Mix powder + liquid ratio 1:1 (mix manually) |
MTA Repair HP | Angelus, Londrina, PR, Brazil | powder: tricalcium silicate, dicalcium silicate, tricalcium aluminate, calcium oxide, and calcium tungstate liquid: water and plasticizer | 0.085 g capsules of powder + 12 drops of liquid (mix manually) |
Ortho MTA | BioMTA, Seoul, Korea | calcium carbonate, silicon dioxide, aluminium oxide, and dibismuth trioxide | 0.2 g pouches of powder + 2 drops of water (mix manually) |
Retro MTA | BioMTA, Seoul, Korea | calcium carbonate, silicon dioxide, aluminium oxide, and calcium zirconia complex | 0.3 g pouches of powder + 3 drops of water (mix manually) |
Material | Irrigant | |||||||
---|---|---|---|---|---|---|---|---|
Scale | 10% CA | 40% CA | 15% EDTA | 2% CHX | 2% NaOCl | 0.9% NaCl | ||
ProRoot MTA | color | 0 | 6 | 6 | 6 | 6 | 0 | 6 |
1 | 0 | 0 | 0 | 0 | 6 | 0 | ||
2 | 0 | 0 | 0 | 0 | 0 | 0 | ||
structure | a | 6 | 6 | 6 | 6 | 6 | 6 | |
b | 0 | 0 | 0 | 0 | 0 | 0 | ||
Biodentine | color | 0 | 6 | 6 | 6 | 4 | 6 | 6 |
1 | 0 | 0 | 0 | 2 | 0 | 0 | ||
2 | 0 | 0 | 0 | 0 | 0 | 0 | ||
structure | a | 0 | 1 | 6 | 6 | 6 | 6 | |
b | 6 | 5 | 0 | 0 | 0 | 0 | ||
MTA Plus | color | 0 | 6 | 6 | 6 | 6 | 4 | 6 |
1 | 0 | 0 | 0 | 0 | 2 | 0 | ||
2 | 0 | 0 | 0 | 0 | 0 | 0 | ||
structure | a | 6 | 6 | 6 | 6 | 6 | 6 | |
b | 0 | 0 | 0 | 0 | 0 | 0 | ||
MTA Repair HP | color | 0 | 1 | 0 | 6 | 6 | 6 | 6 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2 | 5 | 6 | 0 | 0 | 0 | 0 | ||
structure | a | 0 | 0 | 6 | 6 | 6 | 6 | |
b | 6 | 6 | 0 | 0 | 0 | 0 | ||
Ortho MTA | color | 0 | 6 | 6 | 6 | 6 | 0 | 6 |
1 | 0 | 0 | 0 | 0 | 6 | 0 | ||
2 | 0 | 0 | 0 | 0 | 0 | 0 | ||
structure | a | 6 | 6 | 6 | 6 | 6 | 6 | |
b | 0 | 0 | 0 | 0 | 0 | 0 | ||
Retro MTA | color | 0 | 6 | 6 | 6 | 6 | 6 | 6 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2 | 0 | 0 | 0 | 0 | 0 | 0 | ||
structure | a | 0 | 0 | 6 | 6 | 6 | 6 | |
b | 6 | 6 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metlerska, J.; Dammaschke, T.; Lipski, M.; Fagogeni, I.; Machoy-Mokrzyńska, A.; Nowicka, A. Effect of Citric Acid on Color Changes of Calcium Silicate-Based Cements an In Vitro Study. Appl. Sci. 2021, 11, 2339. https://doi.org/10.3390/app11052339
Metlerska J, Dammaschke T, Lipski M, Fagogeni I, Machoy-Mokrzyńska A, Nowicka A. Effect of Citric Acid on Color Changes of Calcium Silicate-Based Cements an In Vitro Study. Applied Sciences. 2021; 11(5):2339. https://doi.org/10.3390/app11052339
Chicago/Turabian StyleMetlerska, Joanna, Till Dammaschke, Mariusz Lipski, Irini Fagogeni, Anna Machoy-Mokrzyńska, and Alicja Nowicka. 2021. "Effect of Citric Acid on Color Changes of Calcium Silicate-Based Cements an In Vitro Study" Applied Sciences 11, no. 5: 2339. https://doi.org/10.3390/app11052339
APA StyleMetlerska, J., Dammaschke, T., Lipski, M., Fagogeni, I., Machoy-Mokrzyńska, A., & Nowicka, A. (2021). Effect of Citric Acid on Color Changes of Calcium Silicate-Based Cements an In Vitro Study. Applied Sciences, 11(5), 2339. https://doi.org/10.3390/app11052339