The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration
Abstract
1. Introduction
2. Project Description
2.1. Introduction to MSP Method
2.2. Characteristics of the MSP Method
3. Comparison of Blasting Efficiency by Size of Empty Hole
4. Real-Scale Test Blasting
4.1. Overview of Test Blasting
4.2. Results of Test Blasting
4.3. Results of PPV Histories
5. Discussion
5.1. Analysis of Vibration-Increasing Factors
5.2. Analysis of Propagation Characteristics of Blast-Induced Vibration
5.3. Effects of MSP Method on Vibration Reduction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- New, B.M. Ground vibration caused by construction works. Tunn. Undergr. Space Technol. 1990, 5, 179–190. [Google Scholar] [CrossRef]
- Berta, G. Blasting-induced vibration in tunnelling. Tunn. Undergr. Space Technol. 1994, 9, 175–187. [Google Scholar] [CrossRef]
- Kuzu, C.; Guclu, E. The problem of human response to blast induced vibrations in tunnel construction and mitigation of vibration effects using cautious blasting in half-face blasting rounds. Tunn. Undergr. Space Technol. 2009, 24, 53–61. [Google Scholar] [CrossRef]
- Ferreira, C.; Freire, F.; Ribeiro, J.M.B. Life-cycle assessment of a civil explosive. J. Clean. Prod. 2015, 89, 159–164. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, J.S.; Kang, G.C. Full-scale tests for assessing blasting-induced vibration and noise. Shock Vib. 2018, 16, 1–14. [Google Scholar] [CrossRef]
- Tian, X.; Song, Z.; Wang, J. Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology. Soil Dyn. Earthq. Eng. 2019, 126, 105813. [Google Scholar] [CrossRef]
- Lee, H.; Lim, H.U. The effect of the number of free faces on the level of blasting vibration. J. Ind. Technol. 2001, 21, 267–276. [Google Scholar]
- Zare, S.; Bruland, A. Comparison of tunnel blast design models. Tunn. Undergr. Space Technol. 2006, 21, 533–541. [Google Scholar] [CrossRef]
- Xie, L.; Lu, W.; Zhang, Q.; Jiang, Q.; Chen, M.; Zhao, J. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn. Undergr. Space Technol. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Oh, E.H.; Won, Y.H.; Lim, H.U. A study on the improvement of a charging and initiating method in a tunnel excavation. J. Korean Soc. Explos. Blast Eng. 2006, 24, 1–8. [Google Scholar]
- Kim, D.H.; Lee, S.P.; Lee, H.Y.; Lee, T.R.; Jeon, S.W. A case study of the new center-cut method in tunnel: SAV-Cut (Stage Advance V-Cut). J. Korean Soc. Explos. Blast Eng. 2007, 25, 31–43. [Google Scholar]
- Oh, T.-M.; Cho, G.-C.; Ji, I.-T. Effects of free surface using waterjet cutting for rock blasting excavation. J. Korean Tunn. Undergr. Space Assoc. 2013, 15, 49–57. [Google Scholar] [CrossRef]
- Park, H.; Suk, C.G.; Noh, Y.S. A comparison of ground vibration in center cut blasting using artificial joints. J. Korean Soc. Explos. Blast Eng. 2018, 36, 16–25. [Google Scholar]
- Kang, C.W. Blasting Engineering A to Z, 3rd ed.; Goomibook: Seoul, Korea, 2014; pp. 131–402. [Google Scholar]
- Beak, J.H.; Beak, S.H.; Han, D.H.; Won, A.R.; Kim, C.S. A study on the design of PLHBM. Explos. Blasting 2012, 30, 66–76. [Google Scholar]
- Choi, H.B.; Han, D.H.; Ki, K.C. A study on the decay effect of ground vibration based on the number of PLHBM holes in Gneiss area. J. Korean Soc. Explos. Blast Eng. 2016, 34, 1–9. [Google Scholar]
- Kim, M.S.; Lee, J.K.; Choi, Y.H.; Kim, S.H.; Jeong, K.W.; Kim, K.L.; Lee, S.S. A study on the optimal setting of latge uncharged hole boring machine for reducing blast-induced vibration using deep learning. J. Korean Soc. Explos. Blast Eng. 2020, 39, 16–25. [Google Scholar]
- Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. In Proceedings of the Physical Society, Section B; IOP Publishing: Bristol, UK, 1949; Volume 62, pp. 676–700. [Google Scholar]
- Field, J.; Ladegaard-Pedersen, A. The importance of the reflected stress wave in rock blasting. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1971, 8, 213–226. [Google Scholar] [CrossRef]
- Cho, S.H.; Kaneko, K. Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 771–784. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Li, Y.-C.; Shen, R. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion. Int. J. Rock Mech. Min. Sci. 2007, 44, 730–738. [Google Scholar] [CrossRef]
- Ma, G.; An, X. Numerical simulation of blasting-induced rock fractures. Int. J. Rock Mech. Min. Sci. 2008, 45, 966–975. [Google Scholar] [CrossRef]
- Ryu, C.H.; Choi, B.H. Theory and practice of explosive blasting. J. Korean Soc. Explos. Blast Eng. 2016, 34, 10–18. [Google Scholar]
- Blair, D. The free surface influence on blast vibration. Int. J. Rock Mech. Min. Sci. 2015, 77, 182–191. [Google Scholar] [CrossRef]
- Choi, B.H.; Ryu, C.H. Consideration on the relation between vibration level and peak particle velocity in regulation of ground vibration. J. Korean Soc. Explos. Blast Eng. 2012, 30, 1–8. [Google Scholar]
- Murmu, S.; Maheshwari, P.; Verma, H.K. Empirical and probabilistic analysis of blast-induced ground vibrations. Int. J. Rock Mech. Min. Sci. 2018, 103, 267–274. [Google Scholar] [CrossRef]
- Yan, Y.; Hou, X.; Fei, H. Review of predicting the blast-induced ground vibrations to reduce impacts on ambient urban communities. J. Clean. Prod. 2020, 260, 121135. [Google Scholar] [CrossRef]
- Olofsson, S. Applied Explosives Technology for Construction and Mining, 2nd ed.; Applex: Arla, Sweden, 1988; pp. 200–237. [Google Scholar]
- Nateghi, R.; Kiany, M.; Gholipouri, O. Control negative effects of blasting waves on concrete of the structures by analyzing of parameters of ground vibration. Tunn. Undergr. Space Technol. 2009, 24, 608–616. [Google Scholar] [CrossRef]
- Xu, S.; King, M.S. Attenuation of elastic waves in a cracked solid. Geophys. J. Int. 1990, 101, 169–180. [Google Scholar] [CrossRef]
- Ahn, J.K.; Park, D.H.; Park, K.C.; Yoon, J.N. Propagation characteristics of blast-induced vibration to fractured zone. J. Korean Tunn. Undergr. Space Assoc. 2017, 19, 959–972. [Google Scholar]
- Devine, J.F.; Beck, R.H.; Meyer, A.V.C.; Duvall, W.I. Effect of Charge Weight on Vibration Levels from Quarry Blasting; U.S. Department of the Interior, Bureau of Mines: Washington, WA, USA, 1966; pp. 1–37. [Google Scholar]
- Nicholls, H.R.; Johnson, C.F.; Duvall, W.I. Blasting Vibrations and Their Effects on Structures; U.S. Department of Interior, Bureau of Mines: Denver, CO, USA, 1971; pp. 1–105. [Google Scholar]
- Lee, S.C. The influence of the detonation velocity of explosive in blasting. J. Korean Soc. Explos. Blast Eng. 2005, 23, 43–56. [Google Scholar]
- Park, Y.S.; Jeong, M.S. The development and application of low vibration explosives (NewFINECKER). J. Korean Soc. Explos. Blast Eng. 2010, 28, 11–18. [Google Scholar]
- Hwang, N.S.; Lee, D.H.; Lee, S.J. A case study of blasting with electronic detonator. J. Korean Soc. Explos. Blast Eng. 2016, 34, 40–45. [Google Scholar]
- Kim, Y.P.; Kim, G.S.; Son, Y.B.; Kim, J.H.; Kim, H.D.; Lee, J.W. Characteristics of Near-field Ground Vibration in Tunnel Blasting using Electronic Detonators. J. Korean Soc. Explos. Blast Eng. 2013, 31, 76–86. [Google Scholar]
- Iwano, K.; Hashiba, K.; Nagae, J.; Fukui, K. Reduction of tunnel blasting induced ground vibrations using advanced electronic detonators. Tunn. Undergr. Space Technol. 2020, 105, 103556. [Google Scholar] [CrossRef]
- Wang, P.; Ma, Y.-J.; Zhu, Y.; Zhu, J. Experimental Study of Blast-Induced Vibration Characteristics Based on the Delay-Time Errors of Detonator. Adv. Civ. Eng. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Cho, S.H.; Yang, H.S.; Kaneko, K. Influence of the initiation error of the delay detonator on the rock fracture process in smooth blasting. Tunn. Undergr. Space Technol. 2004, 14, 121–132. [Google Scholar]
- Winzer, S.R.; Furth, W.; Ritter, A. Initiator firing times and their relationship to blasting performance. In Proceedings of the 20th U.S Symposium on Rock Mechanics (USRMS), Austin, TX, USA, 4–6 June 1979; pp. 461–470. [Google Scholar]
- Yoon, J.S.; Lim, S.H.; Lee, J.M.; Bae, S.H. Study on comparison with electronic detonation blasting and non-electric detonation blasting. J. Korean Soc. Explos. Blast Eng. 2007, 10, 185–191. [Google Scholar]
- Singh, S.P.; Xavier, P. Causes, impact and control of overbreak in underground excavations. Tunn. Undergr. Space Technol. 2005, 20, 63–71. [Google Scholar] [CrossRef]
- Min, H.D.; Jeong, M.S.; Jin, Y.H.; Park, Y.S. Dead pressure and its measures of emulsion explosives at small sectional tunnel. J. Korean Soc. Explos. Blast. Eng. 2008, 26, 29–37. [Google Scholar]
- Kim, Y.; Moon, H.-K. Application of the guideline for overbreak control in granitic rock masses in Korean tunnels. Tunn. Undergr. Space Technol. 2013, 35, 67–77. [Google Scholar] [CrossRef]
- Sharafat, A.; Tanoli, W.A.; Raptis, G.; Seo, J.W. Controlled blasting in underground construction: A case study of a tunnel plug demolition in the Neelum Jhelum hydroelectric project. Tunn. Undergr. Space Technol. 2019, 93, 1–18. [Google Scholar] [CrossRef]
- Jung, H.S.; Jung, K.S.; Mun, H.N.; Chun, B.S.; Park, D.H. A study on the vibration propagation characteristics of controlled blasting methods and explosives in tunnelling. J. Korea GEO-Environ. Soc. 2011, 12, 5–14. [Google Scholar]
- Worsey, P.N.; Farmer, I.W.; Matheson, G.D. The mechanics of pre-splitting in discontinuous rock. In Proceedings of the 22nd U.S. Symposium on Rock Mechanics (USRMS), Cambridge, MA, USA, 29 June–2 July 1981; pp. 205–210. [Google Scholar]
- Choi, S.O.; Park, E.S.; Sunwoo, C.; Chung, S.K. A study on the blasting dynamic analysis using the measurement vibration waveform. J. Korean Soc. Rock Mech. 2004, 14, 108–120. [Google Scholar]
General Blasting (B) | Single-MSP | Multi-MSP | |
---|---|---|---|
Site image | |||
Number of initial free faces | 0 or 1–3 (Small scale) | 1 (Large scale) | 2–3 (Extremely large scale) |
Characteristics |
|
|
|
Application target areas |
|
|
|
Specification | Description |
---|---|
Name | Minimate Plus (Instantel Inc.) |
Range | Up to 254 mm/s |
Resolution | 0.127 or 0.0159 mm/s with built-in preamp |
Accuracy | 5% or 0.5 mm/s |
Frequency range | 2 to 250 Hz |
Sampling rate | 1024 to 16,000 S/s per channel |
Pattern B | Pattern CB-1 | Pattern CB-2 | Pattern CB-3 | Pattern CB-4 | |
---|---|---|---|---|---|
Cut method | Cylinder-cut (2 holes) | Cylinder-cut (2 holes) | Single-MSP (1 hole) | Single-MSP (1 hole) | Multi-MSP (3 holes) |
Controlled blasting method | Smooth blasting | Combined CB | Combined CB | Combined CB | Combined CB |
Explosives | Emulsion | Emulsion | Emulsion | Emulsion | Low-vibration explosive |
Detonator | Non-electric | Non-electric | Non-electric | Non-electric | Non-electric |
Advance (m) | 2.0 | 2.0 | 2.0 | 1.0 | 0.8 |
Blast hole depth (m) | 2.2 | 2.2 | 2.2 | 1.1 | 1.0 |
Charge per delay (kg/hole) | 1.20 | 1.20 | 1.20 | 0.375 | 0.24 |
Number of LD holes | - | 32 | 37 | 37 | 37 |
Spacing of contour holes (m) | 0.55 | 0.4 | 0.4 | 0.4 | 0.4 |
Number of blast holes | 158 | 210 | 211 | 235 | 323 |
Total charge (kg) | 159.70 | 178.10 | 176.60 | 68.325 | 69.880 |
Name | Manufacturer | Diameter (mm) | Velocity of Detonation (m/s) | Density (g/cc) | Heat of Explosion (kcal/kg) | Gas Quantity (ℓ/kg) |
---|---|---|---|---|---|---|
NewMite Plus | Hanhwa corp. | 32 | 5700 | 1.1–1.2 | 880 | 950 |
Finex | 17 | 4400 | 1.0 | 800 | 850 |
No. | Cut Method | Peak Particle Velocity (PPV, ) | Vibration Reduction Rate (%) Compared with B | |||||
---|---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | Min. | Max. | Ave. | |||
1 | B | 0.468 | 1.260 | 0.624 | 0.468 | 1.260 | 0.784 | - |
2 | CB-1 | 0.495 | 0.838 | 0.637 | 0.495 | 0.838 | 0.657 | ▼ 16.20 |
3 | CB-2 | 0.868 | 1.080 | 1.480 | 0.868 | 1.480 | 1.143 | ▲ 45.79 |
4 | CB-3 | 0.327 | 0.592 | 0.505 | 0.327 | 0.592 | 0.475 | ▼ 39.41 |
5 | CB-4 | 0.241 | 0.160 | 0.252 | 0.160 | 0.252 | 0.218 | ▼ 72.19 |
Group | Type | Parameter | Degree of Effect | ||
---|---|---|---|---|---|
Severe | Moderate | Mild | |||
Geological conditions | Uncontrollable variables | Distance between blasting point and structures | ○ | ||
Overburden | ○ | ||||
Topography and stratum | ○ | ||||
Rock condition | ○ | ||||
Atmospheric condition | ○ | ||||
Blasting conditions | Controllable variables | Type of explosive | ○ | ||
Charge per delay | ○ | ||||
Delay time of detonation | ○ | ||||
Drilling angle | ○ | ||||
Burden and hole spacing | ○ | ||||
Stemming conditions | ○ | ||||
Primer position | ○ | ||||
Charge weight | ○ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.S.; Lee, S.S. The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration. Appl. Sci. 2021, 11, 1814. https://doi.org/10.3390/app11041814
Kim MS, Lee SS. The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration. Applied Sciences. 2021; 11(4):1814. https://doi.org/10.3390/app11041814
Chicago/Turabian StyleKim, Min Seong, and Sean Seungwon Lee. 2021. "The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration" Applied Sciences 11, no. 4: 1814. https://doi.org/10.3390/app11041814
APA StyleKim, M. S., & Lee, S. S. (2021). The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration. Applied Sciences, 11(4), 1814. https://doi.org/10.3390/app11041814