Predicting the Safety Climate in Construction Sites of Saudi Arabia: A Bootstrapped Multiple Ordinal Logistic Regression Modeling Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, K.; Ryu, H. Predicting types of occupational accidents at construction sites in Korea using random forest model. Saf. Sci. 2019, 120, 226–236. [Google Scholar] [CrossRef]
- Mohammadi, A.; Tavakolan, M. Modeling the effects of production pressure on safety performance in construction projects using system dynamics. J. Saf. Res. 2019, 71, 273–284. [Google Scholar] [CrossRef]
- Patel, D.; Jha, K. Neural Network Approach for Safety Climate Prediction. J. Manag. Eng. 2014, 31, 05014027. [Google Scholar] [CrossRef]
- Newaz, M.; Davis, P.; Jefferies, M.; Pillay, M. Developing a safety climate factor model in construction research and practice: A systematic review identifying future directions for research. Eng. Constr. Archit. Manag. 2018, 25, 738–757. [Google Scholar] [CrossRef]
- Chen, Y.; McCabe, B.; Hyatt, D. A resilience safety climate model predicting construction safety performance. Saf. Sci. 2018, 109, 434–445. [Google Scholar] [CrossRef]
- Mosly, I. Factors Influencing Safety Climate in the Construction Industry: A Review. Int. J. Constr. Eng. Manag. 2019, 8, 105–109. [Google Scholar] [CrossRef]
- Kim, N.; Rahim, N.A.; Iranmanesh, M.; Foroughi, B. The role of the safety climate in the successful implementation of safety management systems. Saf. Sci. 2019, 118, 48–56. [Google Scholar] [CrossRef]
- Loosemore, M.; Sunindijo, R.; Zhang, S. Comparative Analysis of Safety Climate in the Chinese, Australian, and Indonesian Construction Industries. J. Constr. Eng. Manag. 2020, 146, 04020129. [Google Scholar] [CrossRef]
- Winge, S.; Albrechtsen, E.; Arnesen, J. A comparative analysis of safety management and safety performance in twelve construction projects. J. Saf. Res. 2019, 71, 139–152. [Google Scholar] [CrossRef]
- Elmoujaddidi, F.; Bachir, A. Perceived risk, safety climate and safety behavior on Moroccan construction sites. Int. J. Occup. Saf. Ergon. 2020, 26, 121–128. [Google Scholar] [CrossRef]
- Wu, C.; Luo, X.; Wang, T.; Wang, Y.; Sapkota, B. Safety challenges and improvement strategies of ethnic minority construction workers: A case study in Hong Kong. Int. J. Occup. Saf. Ergon. 2020, 26, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, R.; Fang, D.; Lingard, H. Measuring Safety Climate of a Construction Company. J. Constr. Eng. Manag. 2009, 135, 890–899. [Google Scholar] [CrossRef]
- Zahoor, H.; Chan, A.; Utama, W.; Gao, R.; Zafar, I. Modeling the Relationship between Safety Climate and Safety Performance in a Developing Construction Industry: A Cross-Cultural Validation Study. Int. J. Environ. Res. Public Health 2017, 14, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, S.; Hon, C.; Chan, A.; Wong, F.; Javed, A. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers. Int. J. Environ. Res. Public Health 2018, 15, 484. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S. The predictive validity of safety climate. J. Saf. Res. 2007, 38, 511–521. [Google Scholar] [CrossRef]
- Patel, D.; Jha, K. Neural Network Model for the Prediction of Safe Work Behavior in Construction Projects. J. Constr. Eng. Manag. 2015, 141, 04014066. [Google Scholar] [CrossRef]
- Patel, D.; Jha, K. Evaluation of construction projects based on the safe work behavior of co-employees through a neural network model. Saf. Sci. 2016, 89, 240–248. [Google Scholar] [CrossRef]
- Han, Y.; Yin, Z.; Liu, J.; Jin, R.; Gidado, K.; Painting, N.; Yang, Y.; Yan, L. Defining and Testing a Safety Cognition Framework Incorporating Safety Hazard Perception. J. Constr. Eng. Manag. 2019, 145, 04019081. [Google Scholar] [CrossRef]
- Stackhouse, M.; Turner, N. How do organizational practices relate to perceived system safety effectiveness? Perceptions of safety climate and co-worker commitment to safety as workplace safety signals. J. Saf. Res. 2019, 70, 59–69. [Google Scholar] [CrossRef]
- Nielsen, K.; Grytnes, R.; Dyreborg, J. Pilot test of a tailored intervention to improve apprentice safety in small construction companies. Saf. Sci. 2019, 117, 305–313. [Google Scholar] [CrossRef]
- Khoshnava, S.; Rostami, R.; Zin, R.; Mishra, A.; Rani, P.; Mardani, A.; Alrasheedi, M. Assessing the impact of construction industry stakeholders on workers’ unsafe behaviours using extended decision making approach. Autom. Constr. 2020, 118, 103162. [Google Scholar] [CrossRef]
- Probst, T.; Goldenhar, L.; Byrd, J.; Betit, E. The Safety Climate Assessment Tool (S-CAT): A rubric-based approach to measuring construction safety climate. J. Saf. Res. 2019, 69, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Shohet, I.; Luzi, M.; Tarshish, M. Optimal allocation of resources in construction safety: Analytical-empirical model. Saf. Sci. 2018, 104, 231–238. [Google Scholar] [CrossRef]
- Marín, L.; Lipscomb, H.; Cifuentes, M.; Punnett, L. Perceptions of safety climate across construction personnel: Associations with injury rates. Saf. Sci. 2019, 118, 487–496. [Google Scholar] [CrossRef]
- Xia, N.; Xie, Q.; Hu, X.; Wang, X.; Men, H. A dual perspective on risk perception and its effect on safety behavior: A moderated mediation model of safety motivation, and supervisor’s and coworkers’ safety climate. Accid. Anal. Prev. 2020, 134, 105350. [Google Scholar] [CrossRef] [PubMed]
- He, C.; McCabe, B.; Jia, G.; Sun, J. Effects of Safety Climate and Safety Behavior on Safety Outcomes between Supervisors and Construction Workers. J. Constr. Eng. Manag. 2020, 146, 04019092. [Google Scholar] [CrossRef]
- Pandit, B.; Albert, A.; Patil, Y.; Al-Bayati, A. Impact of safety climate on hazard recognition and safety risk perception. Saf. Sci. 2019, 113, 44–53. [Google Scholar] [CrossRef]
- Low, B.; Man, S.; Chan, A.; Alabdulkarim, S. ConstructionWorker Risk-Taking Behavior Model with Individual and Organizational Factors. Int. J. Environ. Res. Public Health 2019, 16, 1335. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Chan, A.; Lui, L.; Fang, Y. Effects of individual and organizational factors on safety consciousness and safety citizenship behavior of construction workers: A comparative study between Hong Kong and Mainland China. Saf. Sci. 2021, 135, 105116. [Google Scholar] [CrossRef]
- Dale, A.; Colvin, R.; Barrera, M.; Strickland, J.; Evanoff, B. The association between subcontractor safety management programs and worker perceived safety climate in commercial construction projects. J. Saf. Res. 2020, 74, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Schwatka, N.; Goldenhar, L.; Johnson, S.; Beldon, M.; Tessler, J.; Dennerlein, J.; Fullen, M.; Trieu, H. A training intervention to improve frontline construction leaders’ safety leadership practices and overall jobsite safety climate. J. Saf. Res. 2019, 70, 253–262. [Google Scholar] [CrossRef]
- Schwatka, N.; Goldenhar, L.; Johnson, S. Change in frontline supervisors’ safety leadership practices after participating in a leadership training program: Does company size matter? J. Saf. Res. 2020, 74, 199–205. [Google Scholar] [CrossRef]
- Goldenhar, L.; Schwatka, N.; Johnson, S. Leadership skills for strengthening jobsite safety climate. J. Saf. Res. 2019, 70, 263–271. [Google Scholar] [CrossRef]
- Shohet, I.; Wei, H.; Skibniewski, M.; Tak, B.; Revivi, M. Integrated Communication, Control, and Command of Construction Safety and Quality. J. Constr. Eng. Manag. 2019, 145, 04019051. [Google Scholar] [CrossRef]
- Zamani, V.; Banihashemi, S.; Abbasi, A. How can communication networks among excavator crew members in construction projects affect the relationship between safety climate and safety outcomes? Saf. Sci. 2020, 128, 104737. [Google Scholar] [CrossRef]
- Pandit, B.; Albert, A.; Patil, Y. Developing construction hazard recognition skill: Leveraging safety climate and social network safety communication patterns. Constr. Manag. Econ. 2020, 38, 640–658. [Google Scholar] [CrossRef]
- Esmaeili, B.; Hallowell, M.; Rajagopalan, B. Attribute-Based Safety Risk Assessment. II: Predicting Safety Outcomes Using Generalized Linear Models. J. Constr. Eng. Manag. 2015, 141, 04015022. [Google Scholar] [CrossRef]
- Hallowell, M.; Bhandari, S.; Alruqi, W. Methods of safety prediction: Analysis and integration of risk assessment, leading indicators, precursor analysis, and safety climate. Constr. Manag. Econ. 2020, 38, 308–321. [Google Scholar] [CrossRef]
- Panuwatwanich, K.; Al-Haadir, S.; Stewart, R. Influence of safety motivation and climate on safety behaviour and outcomes: Evidence from the Saudi Arabian construction industry. Int. J. Occup. Saf. Ergon. 2017, 23, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Lavaysse, L.; Probst, T. Safety climate and safety outcomes: A meta-analytic comparison of universal vs. industry-specific safety climate predictive validity. Work Stress 2019, 33, 41–57. [Google Scholar] [CrossRef]
- Chang, Y.; Lee, S.; Liu, P.; Chang, C. Injury Prediction Based on Safety Climate Questionnaire Score Using Artificial Neural Networks. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 December 2017. [Google Scholar]
- Su, Y.; Yang, S.; Liu, K.; Hua, K.; Yao, Q. Developing A Case-Based Reasoning Model for Safety Accident Pre-Control and Decision Making in the Construction Industry. Int. J. Environ. Res. Public Health 2019, 16, 1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tixier, A.; Hallowell, M.; Rajagopalan, B.; Bowman, D. Application of machine learning to construction injury prediction. Autom. Constr. 2016, 69, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Gu, B.; Chin, S.; Lee, J. Machine learning predictive model based on national data for fatal accidents of construction workers. Autom. Constr. 2020, 110, 102974. [Google Scholar] [CrossRef]
- Mosly, I.; Makki, A. Safety Climate Perceptions in the Construction Industry of Saudi Arabia: The Current Situation. Int. J. Environ. Res. Public Health 2020, 17, 6717. [Google Scholar] [CrossRef]
- Makki, A.; Mosly, I. Determinants for Safety Climate Evaluation of Construction Industry Sites in Saudi Arabia. Int. J. Environ. Res. Public Health 2020, 17, 8225. [Google Scholar] [CrossRef]
- O’Connell, A. Logistic Regression Models for Ordinal Response Variables; Sage: Thousand Oaks, CA, USA, 2006. [Google Scholar]
- Harrell, F. Ordinal Logistic Regression. In Regression Modeling Strategies; Springer: Cham, Switzerland, 2015; pp. 311–325. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE Publications Ltd.: London, UK, 2018. [Google Scholar]
- Park, H. An introduction to logistic regression: From basic concepts to interpretation with particular attention to nursing domain. J. Korean Acad. Nurs. 2013, 43, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 13: Receiver operating characteristic curves. Crit. Care 2004, 8, 508–512. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; So, T. Logistic regression analysis and reporting: A primer. Underst. Stat. 2002, 1, 31–70. [Google Scholar] [CrossRef]
- IBM. IBM SPSS Statistics for Windows, Version 23.0; IBM Corp: Armonk, NY, USA, 2015. [Google Scholar]
- Bujang, M.; Sa’at, N.; Sidik, T.; Joo, L. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays. J. Med. Sci. 2018, 25, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.; Feinstein, A. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Harrell, F.; Lee, K.; Mark, D. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Fox, J. Bootstrapping Regression Models Appendix to An R and S-PLUS Companion to Applied Regression. 2002. Available online: https://statweb.stanford.edu/~tibs/sta305files/FoxOnBootingRegInR.pdf (accessed on 5 February 2021).
Component a | Determinant b | |
---|---|---|
Safety commitment | D1 | Workers’ commitment to safety |
D2 | Appraisal of risks and hazards | |
D3 | Management’s commitment to safety | |
D4 | Management’s safety justice | |
D5 | Competence | |
Safety interaction | D6 | Workers’ involvement |
D7 | Coworker influences | |
D8 | Communication | |
D9 | Workers’ attitude toward health and safety | |
D10 | Supportive environment | |
Safety support | D11 | Education and training |
D12 | Social security and health insurance | |
D13 | Supervision, guidance, and inspection |
Determinant | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | 1.000 | 0.350 ** | 0.379 ** | 0.380 ** | 0.225 ** | 0.015 | −0.019 | 0.053 | 0.127 ** | 0.065 | 0.279 ** | 0.101 * | 0.303 ** |
D2 | 1.000 | 0.286 ** | 0.342 ** | 0.261 ** | 0.178 ** | 0.094 * | 0.076 | 0.195 ** | 0.116 ** | 0.256 ** | 0.116 ** | 0.293 ** | |
D3 | 1.000 | 0.366 ** | 0.186 ** | 0.066 | 0.047 | 0.132 ** | 0.079 | 0.134 ** | 0.272 ** | 0.092 * | 0.294 ** | ||
D4 | 1.000 | 0.179 ** | 0.007 | −0.021 | 0.059 | 0.081 | 0.135 ** | 0.284 ** | 0.210 ** | 0.296 ** | |||
D5 | 1.000 | 0.122 ** | 0.062 | 0.124 ** | 0.234 ** | 0.178 ** | 0.154 ** | 0.094 * | 0.189 ** | ||||
D6 | 1.000 | 0.408 ** | 0.318 ** | 0.350 ** | 0.293 ** | −0.035 | 0.126 ** | 0.052 | |||||
D7 | 1.000 | 0.449 ** | 0.299 ** | 0.221 ** | 0.050 | 0.166 ** | 0.072 | ||||||
D8 | 1.000 | 0.265 ** | 0.186 ** | 0.071 | 0.159 ** | 0.109 * | |||||||
D9 | 1.000 | 0.221 ** | 0.037 | 0.122 ** | 0.132 ** | ||||||||
D10 | 1.000 | 0.071 | 0.181 ** | 0.146 ** | |||||||||
D11 | 1.000 | 0.156 ** | 0.413 ** | ||||||||||
D12 | 1.000 | 0.161 ** | |||||||||||
D13 | 1.000 |
Component | Predictor | |
---|---|---|
Safety support | X1 | Supervision, guidance, and inspection |
X2 | Social security and health insurance | |
Safety commitment | X3 | Management’s commitment to safety |
X4 | Management’s safety justice | |
Safety interaction | X5 | Coworker influences |
Parameter | θ, β | SE | 95% Wald CI | Wald χ2 a | Exp (θ, β) | 95% Wald CI for Exp(θ, β) | Bootstrap b | VIF c | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias | SE | 95% CI | ||||||||||||
Lower | Upper | Lower | Upper | Lower | Upper | |||||||||
Threshold | θ1 | 3.659 | 0.839 | 2.015 | 5.304 | 19.027 *** | 38.839 | 7.502 | 201.075 | 0.030 | 0.482 | 2.734 | 4.650 | – |
θ2 | 5.687 | 0.868 | 3.985 | 7.388 | 42.908 *** | 294.862 | 53.787 | 1616.445 | 0.041 | 0.497 | 4.761 | 6.699 | – | |
Location | X1 | 0.387 | 0.143 | 0.106 | 0.668 | 7.270 ** | 1.472 | 1.111 | 1.949 | 0.005 | 0.071 | 0.259 | 0.543 | 1.223 |
X2 | 0.340 | 0.124 | 0.098 | 0.582 | 7.586 ** | 1.405 | 1.103 | 1.790 | 0.001 | 0.062 | 0.218 | 0.464 | 1.128 | |
X3 | 0.314 | 0.135 | 0.050 | 0.578 | 5.423 * | 1.369 | 1.051 | 1.783 | 0.002 | 0.066 | 0.181 | 0.444 | 1.265 | |
X4 | 0.282 | 0.122 | 0.043 | 0.521 | 5.353 * | 1.326 | 1.044 | 1.684 | 0.000 | 0.060 | 0.167 | 0.397 | 1.275 | |
X5 | 0.269 | 0.118 | 0.039 | 0.499 | 5.241 * | 1.309 | 1.039 | 1.647 | 0.003 | 0.063 | 0.149 | 0.398 | 1.054 |
Scenario | IV Scores a | Type of DV Score Probability | DV Score b Probability | DV Estimated Score Probability | % | OR |
---|---|---|---|---|---|---|
1 | X1 = 1 X2 = 1 X3 = 1 X4 = 1 X5 = 1 | cumulative | P (Score ≤ 1) | 0.888 | 88.77 | 0.132 |
P (Score ≤ 2) | 0.984 | 98.36 | ||||
P (Score ≤ 3) | 1 | 100 | ||||
individual | P (Score = 1) | 0.888 | 88.77 | |||
P (Score = 2) | 0.096 | 9.59 | ||||
P (Score = 3) | 0.016 | 1.64 | ||||
2 | X1 = 2 X2 = 2 X3 = 2 X4 = 2 X5 = 2 | cumulative | P (Score ≤ 1) | 0.617 | 61.67 | 0.132 |
P (Score ≤ 2) | 0.924 | 92.43 | ||||
P (Score ≤ 3) | 1 | 100 | ||||
individual | P (Score = 1) | 0.617 | 61.67 | |||
P (Score = 2) | 0.308 | 30.76 | ||||
P (Score = 3) | 0.076 | 7.57 | ||||
3 | X1 = 3 X2 = 3 X3 = 3 X4 = 3 X5 = 3 | cumulative | P (Score ≤ 1) | 0.247 | 24.67 | 0.132 |
P (Score ≤ 2) | 0.713 | 71.32 | ||||
P (Score ≤ 3) | 1 | 100 | ||||
individual | P (Score = 1) | 0.247 | 24.67 | |||
P (Score = 2) | 0.466 | 46.65 | ||||
P (Score = 3) | 0.287 | 28.68 | ||||
4 | X1 = 4 X2 = 4 X3 = 4 X4 = 4 X5 = 4 | cumulative | P (Score ≤ 1) | 0.062 | 6.25 | 0.132 |
P (Score ≤ 2) | 0.336 | 33.60 | ||||
P (Score ≤ 3) | 1 | 100 | ||||
individual | P (Score = 1) | 0.062 | 6.25 | |||
P (Score = 2) | 0.274 | 27.35 | ||||
P (Score = 3) | 0.664 | 66.40 | ||||
5 | X1 = 5 X2 = 5 X3 = 5 X4 = 5 X5 = 5 | cumulative | P (Score ≤ 1) | 0.013 | 1.34 | 0.132 |
P (Score ≤ 2) | 0.093 | 9.34 | ||||
P (Score ≤ 3) | 1 | 100 | ||||
individual | P (Score = 1) | 0.013 | 1.34 | |||
P (Score = 2) | 0.080 | 8.00 | ||||
P (Score = 3) | 0.907 | 90.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makki, A.A.; Mosly, I. Predicting the Safety Climate in Construction Sites of Saudi Arabia: A Bootstrapped Multiple Ordinal Logistic Regression Modeling Approach. Appl. Sci. 2021, 11, 1474. https://doi.org/10.3390/app11041474
Makki AA, Mosly I. Predicting the Safety Climate in Construction Sites of Saudi Arabia: A Bootstrapped Multiple Ordinal Logistic Regression Modeling Approach. Applied Sciences. 2021; 11(4):1474. https://doi.org/10.3390/app11041474
Chicago/Turabian StyleMakki, Anas A., and Ibrahim Mosly. 2021. "Predicting the Safety Climate in Construction Sites of Saudi Arabia: A Bootstrapped Multiple Ordinal Logistic Regression Modeling Approach" Applied Sciences 11, no. 4: 1474. https://doi.org/10.3390/app11041474
APA StyleMakki, A. A., & Mosly, I. (2021). Predicting the Safety Climate in Construction Sites of Saudi Arabia: A Bootstrapped Multiple Ordinal Logistic Regression Modeling Approach. Applied Sciences, 11(4), 1474. https://doi.org/10.3390/app11041474