# A Jamming-Resilient and Scalable Broadcasting Algorithm for Multiple Access Channel Networks

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Works

## 3. Technical Preliminaries

## 4. Proposed Broadcast Algorithm

Algorithm 1: K-tuple full withholding. | |

Initialization | |

k = 4 /* the segment size = 4, 8, 16, 32, 64 */ | |

range_stack = {(1,k)} | // stack of ranges to check |

range ← ∅ | // current range |

/* segment process start | */ |

node_{id} = activation_round | // getting node id based on activation round |

repeat | |

range ← Pop(range_stack) | |

if node_{id} in range and IsQueueNotEmpty(node_{id}) then | |

Broadcast() | // transmitting a packet from the queue on the channel |

if feedback = silence then | |

if range_stack is empty then | |

Terminate() | // ending the segment processing |

else if feedback = packet then | |

/* the node keeps broadcasting until the queue is empty | */ |

repeat | |

Broadcast() | |

until feedback = silence | |

Clear(range_stack) | |

Push(range_stack,(1,k)) | |

else | |

/* collision case | */ |

if Size(range_stack) = 2 then | |

/* the two nodes transmits all their packets consecutively | */ |

repeat | |

/* the first node transmitting | */ |

Broadcast() | |

until queue is empty for the first node Wait_Silence() | |

repeat | |

/* the second node transmitting | */ |

Broadcast() | |

until queue is empty for the second node | |

Wait_Silence() | |

Clear(range_stack) | |

Push(range_stack,Range((1, k))) | |

else | |

/* divide the range and store in the stack | */ |

Push(Range(range_stack,first_half)) | |

Push(Range(range_stack,second_half)) | |

until segment terminates |

## 5. Model of Injection

## 6. Jamming Model

## 7. Evaluation

## 8. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lin, G.; Noubir, G. On link layer denial of service in data wireless LANs. Wirel. Commun. Mob. Comput.
**2005**, 5, 273–284. [Google Scholar] [CrossRef] - Bicakci, K.; Tavli, B. Denial-of-Service attacks and countermeasures in IEEE 802.11 wireless networks. Comput. Stand. Interfaces
**2009**, 31, 931–941. [Google Scholar] [CrossRef] - Akyildiz, I.F.; Wang, X. A survey on wireless mesh networks. IEEE Commun. Mag.
**2005**, 43, S23–S30. [Google Scholar] [CrossRef] - Siddiqui, M.S. Security issues in wireless mesh networks. In Proceedings of the 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE’07), Seoul, Korea, 26–28 April 2007; pp. 717–722. [Google Scholar]
- Chan, A.; Liu, X.; Noubir, G.; Thapa, B. Broadcast control channel jamming: Resilience and identification of traitors. In Proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 2496–2500. [Google Scholar]
- Xu, W.; Trappe, W.; Zhang, Y. Channel surfing: Defending wireless sensor networks from interference. In Proceedings of the 2007 6th International Symposium on Information Processing in Sensor Networks, Cambridge, MA, USA, 25–27 April 2007; pp. 499–508. [Google Scholar]
- Xu, W.; Trappe, W.; Zhang, Y. Anti-jamming timing channels for wireless networks. In Proceedings of the First ACM Conference on Wireless Network Security, Alexandria, VA, USA, 31 March–2 April 2008; pp. 203–213. [Google Scholar]
- Li, C.; Dai, H.; Xiao, L.; Ning, P. Communication efficiency of anti-jamming broadcast in large-scale multi-channel wireless networks. IEEE Trans. Signal Process.
**2012**, 60, 5281–5292. [Google Scholar] [CrossRef] - Grover, K.; Lim, A.; Yang, Q. Jamming and anti–jamming techniques in wireless networks: A survey. Int. J. Ad Hoc Ubiquitous Comput.
**2014**, 17, 197–215. [Google Scholar] [CrossRef] [Green Version] - Murty, R.; Padhye, J.; Chandra, R.; Wolman, A.; Zill, B. Designing High Performance Enterprise Wi-Fi Networks. In NSDI’08, Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, San Francisco, CA, USA, 16–18 April 2008; USENIX Association: Berkeley, CA, USA, 2008; pp. 73–88. [Google Scholar]
- Gupta, A.; Min, J.; Rhee, I. WiFox: Scaling WiFi Performance for Large Audience Environments. In CoNEXT ’12, Proceedings of the Eigth Conference on Emerging Networking EXperiments and Technologies, Côte d’Azur, France, 10–13 December 2012; ACM: New York, NY, USA, 2012. [Google Scholar]
- Maity, M.; Raman, B.; Vutukuru, M. TCP Download Performance in Dense WiFi Scenarios: Analysis and Solution. IEEE Trans. Mob. Comput.
**2017**, 16, 213–227. [Google Scholar] [CrossRef] - Liu, B.; Zhu, Q.; Tan, W.; Zhu, H. Congestion-optimal WIFI offloading with user mobility management in smart communications. Wirel. Commun. Mob. Comput.
**2018**, 2018, 9297536. [Google Scholar] [CrossRef] - Ergin, M.A.; Ramachandran, K.; Gruteser, M. An experimental study of inter-cell interference effects on system performance in unplanned wireless LAN deployments. Comput. Netw.
**2008**, 52, 2728–2744. [Google Scholar] [CrossRef] - Raghavendra, R.; Belding, E.M.; Papagiannaki, K.; Almeroth, K.C. Unwanted Link Layer Traffic in Large IEEE 802.11 Wireless Networks. IEEE Trans. Mob. Comput.
**2010**, 9, 1212–1225. [Google Scholar] [CrossRef] - Peng, J.; Cheng, L.; Sikdar, B. A Wireless MAC Protocol with Collision Detection. IEEE Trans. Mob. Comput.
**2007**, 6, 1357–1369. [Google Scholar] [CrossRef] - Sen, S.; Choudhury, R.R.; Nelakuditi, S. CSMA/CN: Carrier sense multiple access with collision notification. IEEE/ACM Trans. Netw.
**2011**, 20, 544–556. [Google Scholar] [CrossRef] - Alassery, F.; Ahmed, W.K.; Sarraf, M.; Lawrence, V. A Novel Low-Complexity Low-Latency Power Efficient Collision Detection Algorithm for Wireless Sensor Networks. Wirel. Sens. Netw.
**2015**, 7, 43. [Google Scholar] [CrossRef] [Green Version] - Anantharamu, L.; Chlebus, B.S. Broadcasting in ad hoc multiple access channels. Theor. Comput. Sci.
**2015**, 584, 155–176. [Google Scholar] [CrossRef] [Green Version] - Chlebus, B.S.; Kowalski, D.R.; Rokicki, M.A. Maximum throughput of multiple access channels in adversarial environments. Distrib. Comput.
**2009**, 22, 93–116. [Google Scholar] [CrossRef] [Green Version] - Aldawsari, B.A.; Chlebus, B.S.; Kowalski, D.R. Broadcasting on Adversarial Multiple Access Channels. In Proceedings of the 18th IEEE International Symposium on Network Computing and Applications (NCA 2019), Cambridge, MA, USA, 26–28 September 2019. [Google Scholar]
- Bellardo, J.; Savage, S. 802.11 Denial-of-Service Attacks: Real Vulnerabilities and Practical Solutions. In Proceedings of the USENIX Security Symposium, Washington, DC, USA, 4–8 August 2003; Volume 12, p. 2. [Google Scholar]
- Negi, R.; Perrig, A. Jamming Analysis of MAC Protocols; Technical Report, Carnegie Mellon Technical Memo; Carnegie Mellon University: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Wu, B.; Chen, J.; Wu, J.; Cardei, M. A survey of attacks and countermeasures in mobile ad hoc networks. In Wireless Network Security; Springer: Boston, MA, USA, 2007; pp. 103–135. [Google Scholar]
- Gummadi, R.; Wetherall, D.; Greenstein, B.; Seshan, S. Understanding and Mitigating the Impact of RF Interference on 802.11 Networks. In SIGCOMM ’07, Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Kyoto, Japan, 27–31 August 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 385–396. [Google Scholar]
- Xu, W.; Trappe, W.; Zhang, Y.; Wood, T. The Feasibility of Launching and Detecting Jamming Attacks in Wireless Networks. In MobiHoc’05, Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Champaign, IL, USA, 25–28 May 2005; Association for Computing Machinery: New York, NY, USA, 2005; pp. 46–57. [Google Scholar]
- Bayraktaroglu, E.; King, C.; Liu, X.; Noubir, G.; Rajaraman, R.; Thapa, B. Performance of IEEE 802.11 under jamming. Mob. Netw. Appl.
**2013**, 18, 678–696. [Google Scholar] [CrossRef] [Green Version] - Xu, W.; Ma, K.; Trappe, W.; Zhang, Y. Jamming sensor networks: Attack and defense strategies. IEEE Netw.
**2006**, 20, 41–47. [Google Scholar] - Thuente, D.; Acharya, M. Intelligent jamming in wireless networks with applications to 802.11 b and other networks. In Proceedings of the MILCOM, Washington, DC, USA, 23–25 October 2006; Volume 6, p. 100. [Google Scholar]
- Xu, W.; Wood, T.; Trappe, W.; Zhang, Y. Channel surfing and spatial retreats: Defenses against wireless denial of service. In Proceedings of the 3rd ACM Workshop on Wireless Security, Philadelphia, PA, USA, 1 October 2004; pp. 80–89. [Google Scholar]
- Jiang, S.; Xue, Y. Optimal wireless network restoration under jamming attack. In Proceedings of the 2009 18th International Conference on Computer Communications and Networks, San Francisco, CA, USA, 3–6 August 2009; pp. 1–6. [Google Scholar]
- Dou, Z.; Si, G.; Lin, Y.; Wang, M. An adaptive resource allocation model with anti-jamming in IoT network. IEEE Access
**2019**, 7, 93250–93258. [Google Scholar] [CrossRef] - Tang, X.; Ren, P.; Han, Z. Jamming mitigation via hierarchical security game for IoT communications. IEEE Access
**2018**, 6, 5766–5779. [Google Scholar] [CrossRef] - Tseng, S.M.; Chen, Y.F.; Chiu, P.H.; Chi, H.C. Jamming resilient cross-layer resource allocation in uplink HARQ-based SIMO OFDMA video transmission systems. IEEE Access
**2017**, 5, 24908–24919. [Google Scholar] [CrossRef] - Abramson, N. The Aloha System: Another Alternative for Computer Communications. In AFIPS ’70 (Fall): Proceedings of the November 17–19, 1970, Fall Joint Computer Conference; ACM: New York, NY, USA, 1970; pp. 281–285. [Google Scholar]
- Roberts, L.G. ALOHA Packet System with and without Slots and Capture. SIGCOMM Comput. Commun. Rev.
**1975**, 5, 28–42. [Google Scholar] [CrossRef] - Capetanakis, J. Tree algorithms for packet broadcast channels. IEEE Trans. Inf. Theory
**1979**, 25, 505–515. [Google Scholar] [CrossRef] - Hayes, J. An Adaptive Technique for Local Distribution. IEEE Trans. Commun.
**1978**, 26, 1178–1186. [Google Scholar] [CrossRef] - Tsybakov, B.; Mikhailov, V. Free Synchronous Packet Access in a Broadcast Channel with Feedback. Probl. Inform. Transm.
**1978**, 14, 259–280. [Google Scholar] - Metcalfe, R.M.; Boggs, D.R. Ethernet: Distributed packet switching for local computer networks. Commun. ACM
**1976**, 19, 395–404. [Google Scholar] [CrossRef] - Aldous, D. Ultimate instability of exponential back-off protocol for acknowledgment-based transmission control of random access communication channels. IEEE Trans. Inf. Theory
**1987**, 33, 219–223. [Google Scholar] [CrossRef] - Kelly, F.P. Stochastic models of computer communication systems. J. R. Stat. Soc. Ser. B Methodol.
**1985**, 47, 379–395. [Google Scholar] [CrossRef] - Håstad, J.; Leighton, F.T.; Rogoff, B. Analysis of Backoff Protocols for Multiple Access Channels. SIAM J. Comput.
**1996**, 25, 740–774. [Google Scholar] [CrossRef] - Raghavan, P.; Upfal, E. Stochastic contention resolution with short delays. SIAM J. Comput.
**1998**, 28, 709–719. [Google Scholar] [CrossRef] - Borodin, A.; Kleinberg, J.M.; Raghavan, P.; Sudan, M.; Williamson, D.P. Adversarial queuing theory. J. ACM
**2001**, 48, 13–38. [Google Scholar] [CrossRef] - Bender, M.A.; Farach-Colton, M.; He, S.; Kuszmaul, B.C.; Leiserson, C.E. Adversarial Contention Resolution for Simple Channels. In SPAA ’05, Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, Las Vegas, NV, USA, 18–20 July 2005; ACM: New York, NY, USA, 2005; pp. 325–332. [Google Scholar]
- Andrews, M.; Awerbuch, B.; Fernández, A.; Leighton, F.T.; Liu, Z.; Kleinberg, J.M. Universal-stability results and performance bounds for greedy contention-resolution protocols. J. ACM
**2001**, 48, 39–69. [Google Scholar] [CrossRef] - Open Source. Scapy Packet Manipulation Tool (v2.4). 2020. Available online: https://scapy.net/ (accessed on 5 January 2020).
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Statist.
**1951**, 22, 79–86. [Google Scholar] [CrossRef] - Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory
**1991**, 37, 145–151. [Google Scholar] [CrossRef] [Green Version] - Heidemann, J.; Bulusu, N.; Elson, J.; Intanagonwiwat, C.; Lan, K.C.; Xu, Y.; Ye, W.; Estrin, D.; Govindan, R. Effects of detail in wireless network simulation. In Proceedings of the SCS multiconference on Distributed Simulation, Phoenix, AZ, USA, 17 January 2001; pp. 3–11. [Google Scholar]
- Rampfl, S. Network simulation and its limitations. In Proceeding Zum Seminar Future Internet (FI), Innovative Internet Technologien und Mobilkommunikation (IITM) und Autonomous Communication Networks (ACN); Citeseer: University Park, PA, USA, 2013; Volume 57. [Google Scholar]

**Figure 7.**The standard deviation of the average packet latency for the three broadcast algorithms for 100 simulation runs and $n\in $ [10–100].

**Figure 8.**Comparing the average packet latency for different k values of the KTFW algorithm and all $n\in $ [10–100].

**Figure 9.**Comparing the throughput of the KTFW and the BEB algorithms for all jamming rates and $n\in $ [10–50].

**Figure 10.**Comparing the throughput of the KTFW and the BEB algorithms for all jamming rates and $n\in $ [60–100].

**Figure 11.**Comparing the average packet latency for the three algorithms (QB, KTFW, and BEB) for all $n\in $ [10–100].

**Figure 12.**Comparing the average packet latency for the BEB and KTFW algorithms for all jamming rates and $n\in [10,50,100]$.

Network Environment | KL-Divergence | |
---|---|---|

RIM | LBIM | |

RAC 1 | 0.368829 ^{i} | 0.693147 |

RAC 2 | 0.368829 | 0.693147 |

RAC 3 | 0.150489 | 0.222243 |

School’s Library 1 | 0.439448 | 0.058563 |

School’s Library 2 | 0.398518 | 0.057747 |

School’s Department 1 | 0.410021 | 0.155151 |

School’s Department 2 | 0.437304 | 0.153306 |

School’s Department 2 | 0.490143 | 0.33193 |

Coffe Shop | 0.01894 | 0.017405 |

Hotel 1 | 0.201748 | 0.09199 |

Hotel 2 | 0.263411 | 0.296524 |

Hotel 3 | 0.693147 | 0.11833 |

Hotel 4 | 0.004971 | 0.002968 |

Hotel 5 | 0.004933 | 0.007417 |

^{i}Underlined value represents the lower divergence.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Aldawsari, B.A.; Jafarian, J.H.
A Jamming-Resilient and Scalable Broadcasting Algorithm for Multiple Access Channel Networks. *Appl. Sci.* **2021**, *11*, 1156.
https://doi.org/10.3390/app11031156

**AMA Style**

Aldawsari BA, Jafarian JH.
A Jamming-Resilient and Scalable Broadcasting Algorithm for Multiple Access Channel Networks. *Applied Sciences*. 2021; 11(3):1156.
https://doi.org/10.3390/app11031156

**Chicago/Turabian Style**

Aldawsari, Bader A., and Jafar Haadi Jafarian.
2021. "A Jamming-Resilient and Scalable Broadcasting Algorithm for Multiple Access Channel Networks" *Applied Sciences* 11, no. 3: 1156.
https://doi.org/10.3390/app11031156