Radon over Kimberlite Pipes: Surface Field Experiments and Calculations of Vertical Diffusion (Arkhangelsk Diamondiferous Province, NW Russia)
Abstract
:1. Introduction
2. Material and Methods
2.1. Radiometric (Emanation) Measurement Method
2.2. Field Method for Measuring the Gas Permeability of Soils
- Q—air flow through the hollow probe, m3·s−1;
- F—form factor of the probe (depends on the geometry of the measurement), m;
- k—soil gas permeability parameter, m2;
- µ—dynamic air viscosity, Pa·s;
- Δp—pressure drop between the surface and the active area of the probe, Pa.
2.3. Calculation of the Diffusion Model of Radon Transport
- C(x)—distribution function along the vertical profile of the radiation of “free” radon in the rock, Bq·m−3;
- CRa—radiation of radium-226 in the rock, Bq·kg−1;
- KэM—coefficient of radon emanation in soil, stand. units;
- ρ—soil density, kg·m−3;
- λ—radon decay constant, 1·s−1;
- D—diffusion coefficient of radon in soil, m2·s−1.
3. Results and Discussion
3.1. Results of the Measurements of Radon Radiation and Gas Permeability
3.2. Results of the Calculation of the Diffusion Model of Radon Transport
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample_ID | Geographic Coordinates | Radon Radiation, Bq·m−3 | Gas Permeability, m2 | |
---|---|---|---|---|
Longitude | Latitude | |||
ChD-1 | 41.10004 | 64.93589 | 690 ± 207 | 3.9 |
ChD-2 | 41.10083 | 64.93764 | 908 ± 272 | 4.9 |
ChD-3 | 41.10253 | 64.93986 | 1381 ± 414 | 7.9 |
ChD-4 | 41.10343 | 64.93393 | 1117 ± 335 | 4.2 |
ChD-5 | 41.10412 | 64.94156 | 1554 ± 466 | 8.9 |
ChD-6 | 41.10412 | 64.93658 | 1475 ± 442 | 4.2 |
ChD-7 | 41.10523 | 64.93817 | 1702 ± 511 | 5.0 |
ChD-8 | 41.1059 | 64.94047 | 1524 ± 457 | 8.0 |
ChD-9 | 41.10624 | 64.94331 | 1861 ± 558 | 15.1 |
ChD-10 | 41.10684 | 64.93636 | 1616 ± 484 | 4.0 |
ChD-11 | 41.10767 | 64.94554 | 1283 ± 385 | 20.5 |
ChD-12 | 41.10809 | 64.94179 | 2918 ± 875 | 5.5 |
ChD-13 | 41.1088 | 64.93776 | 1976 ± 593 | 4.0 |
ChD-14 | 41.10905 | 64.94734 | 1126 ± 338 | 7.2 |
ChD-15 | 41.10937 | 64.93356 | 1001 ± 300 | 3.2 |
ChD-16 | 41.10995 | 64.94909 | 1468 ± 440 | 2.9 |
ChD-17 | 41.11036 | 64.94338 | 193 ± 58 | 110.0 |
ChD-18 | 41.11076 | 64.94527 | 134 ± 40 | 1.2 |
ChD-19 | 41.11149 | 64.95084 | 1895 ± 569 | 13.0 |
ChD-20 | 41.11181 | 64.93525 | 783 ± 235 | 3.9 |
ChD-21 | 41.1122 | 64.94154 | 723 ± 217 | 4.0 |
ChD-22 | 41.11221 | 64.93929 | 2484 ± 745 | 5.4 |
ChD-23 | 41.11265 | 64.94711 | 1309 ± 393 | 1.3 |
ChD-24 | 41.11282 | 64.94893 | 1480 ± 444 | 2.0 |
ChD-25 | 41.11345 | 64.94342 | 964 ± 289 | 13.9 |
ChD-26 | 41.1135 | 64.9528 | 2828 ± 848 | 5.0 |
ChD-27 | 41.11365 | 64.93727 | 127 ± 38 | 4.5 |
ChD-28 | 41.1146 | 64.95053 | 1542 ± 463 | 4.5 |
ChD-29 | 41.11525 | 64.94878 | 1606 ± 489 | 5.5 |
ChD-30 | 41.11536 | 64.95439 | 3742 ± 1123 | 5.1 |
ChD-31 | 41.11541 | 64.93324 | 123 ± 37 | 4.9 |
ChD-32 | 41.11571 | 64.9447 | 1531 ± 459 | 1.3 |
ChD-33 | 41.116 | 64.94196 | 1810 ± 543 | 0.6 |
ChD-34 | 41.116 | 64.95168 | 3286 ± 986 | 7.5 |
ChD-35 | 41.11631 | 64.93833 | 653 ± 196 | 2.6 |
ChD-36 | 41.1172 | 64.93523 | 135 ± 41 | 6.0 |
ChD-37 | 41.11747 | 64.95308 | 4645 ± 1394 | 5.0 |
ChD-38 | 41.11785 | 64.95662 | 970 ± 291 | 2.5 |
ChD-39 | 41.11792 | 64.94843 | 245 ± 74 | 1.3 |
ChD-40 | 41.11817 | 64.95079 | 2832 ± 850 | 9.1 |
ChD-41 | 41.1182 | 64.9464 | 124 ± 37 | 1.5 |
ChD-42 | 41.11881 | 64.94061 | 784 ± 235 | 1.4 |
ChD-43 | 41.11897 | 64.93096 | 156 ± 47 | 4.5 |
ChD-44 | 41.11928 | 64.9546 | 3401 ± 1020 | 6.2 |
ChD-45 | 41.11948 | 64.94379 | 517 ± 155 | 1.5 |
ChD-46 | 41.12003 | 64.93658 | 289 ± 87 | 4.1 |
ChD-47 | 41.12062 | 64.94984 | 2822 ± 847 | 21.0 |
ChD-48 | 41.12072 | 64.95609 | 2546 ± 764 | 3.5 |
ChD-49 | 41.12082 | 64.95259 | 2661 ± 798 | 8.0 |
ChD-50 | 41.12087 | 64.93302 | 141 ± 42 | 5.1 |
ChD-51 | 41.12167 | 64.93907 | 468 ± 140 | 3.2 |
ChD-52 | 41.12246 | 64.94547 | 650 ± 195 | 1.4 |
ChD-53 | 41.12258 | 64.94718 | 240 ± 72 | 1.3 |
ChD-54 | 41.12261 | 64.93463 | 147 ± 44 | 5.4 |
ChD-55 | 41.12307 | 64.94166 | 205 ± 62 | 1.8 |
ChD-56 | 41.1231 | 64.95067 | 877 ± 263 | 1.9 |
ChD-57 | 41.12415 | 64.95401 | 763 ± 229 | 0.3 |
ChD-58 | 41.12441 | 64.95343 | 187 ± 56 | 0.7 |
ChD-59 | 41.12448 | 64.95588 | 1150 ± 345 | 4.0 |
ChD-60 | 41.12469 | 64.93743 | 1045 ± 314 | 5.0 |
ChD-61 | 41.12496 | 64.93075 | 172 ± 52 | 1.9 |
ChD-62 | 41.12531 | 64.94328 | 1160 ± 348 | 1.3 |
ChD-63 | 41.12601 | 64.93566 | 1497 ± 449 | 6.0 |
ChD-64 | 41.12602 | 64.95185 | 422 ± 127 | 0.9 |
ChD-65 | 41.12638 | 64.9489 | 312 ± 94 | 1.3 |
ChD-66 | 41.12665 | 64.93976 | 1051 ± 315 | 3.3 |
ChD-67 | 41.12704 | 64.93346 | 358 ± 107 | 2.9 |
ChD-68 | 41.12739 | 64.93705 | 1405 ± 422 | 5.4 |
ChD-69 | 41.12787 | 64.92915 | 165 ± 50 | 2.0 |
ChD-70 | 41.12808 | 64.94489 | 2209 ± 663 | 1.7 |
ChD-71 | 41.12846 | 64.9414 | 880 ± 264 | 1.9 |
ChD-72 | 41.12851 | 64.95556 | 372 ± 112 | 9.2 |
ChD-73 | 41.12853 | 64.94698 | 241 ± 72 | 1.3 |
ChD-74 | 41.12884 | 64.95269 | 1151 ± 345 | 2.1 |
ChD-75 | 41.12975 | 64.94231 | 483 ± 145 | 1.1 |
ChD-76 | 41.13015 | 64.9308 | 161 ± 48 | 1.9 |
ChD-77 | 41.13023 | 64.95033 | 305 ± 92 | 1.0 |
ChD-78 | 41.13069 | 64.93437 | 275 ± 83 | 2.6 |
ChD-79 | 41.1311 | 64.95325 | 378 ± 113 | 80.0 |
ChD-80 | 41.13147 | 64.94025 | 1026 ± 308 | 1.7 |
ChD-81 | 41.13161 | 64.93839 | 278 ± 83 | 1.7 |
ChD-82 | 41.13169 | 64.94533 | 765 ± 229 | 0.5 |
ChD-83 | 41.13172 | 64.94844 | 364 ± 109 | 1.5 |
ChD-84 | 41.13282 | 64.95083 | 136 ± 41 | 2.5 |
ChD-85 | 41.13302 | 64.93271 | 191 ± 57 | 1.8 |
ChD-86 | 41.13312 | 64.9554 | 460 ± 138 | 8.5 |
ChD-87 | 41.13391 | 64.93607 | 131 ± 39 | 1.8 |
ChD-88 | 41.13461 | 64.94649 | 684 ± 205 | 0.1 |
ChD-89 | 41.13478 | 64.94374 | 935 ± 281 | 1.9 |
ChD-90 | 41.13514 | 64.95333 | 1257 ± 377 | 27.6 |
ChD-91 | 41.1354 | 64.93472 | 408 ± 122 | 1.5 |
ChD-92 | 41.13545 | 64.93751 | 1421 ± 426 | 1.8 |
ChD-93 | 41.13589 | 64.94921 | 610 ± 183 | 1.4 |
ChD-94 | 41.13606 | 64.93981 | 1136 ± 341 | 1.6 |
ChD-95 | 41.1372 | 64.9449 | 675 ± 203 | 1.2 |
ChD-96 | 41.13736 | 64.93679 | 852 ± 256 | 1.2 |
ChD-97 | 41.13747 | 64.95492 | 1523 ± 457 | 18.1 |
ChD-98 | 41.13754 | 64.94715 | 1002 ± 301 | 1.9 |
ChD-99 | 41.13786 | 64.94144 | 151 ± 45 | 1.1 |
ChD-100 | 41.13846 | 64.95261 | 2410 ± 723 | 6.5 |
ChD-101 | 41.13858 | 64.9388 | 606 ± 182 | 1.0 |
ChD-102 | 41.13942 | 64.94336 | 148 ± 44 | 1.0 |
ChD-103 | 41.14017 | 64.94082 | 250 ± 75 | 0.8 |
ChD-104 | 41.14038 | 64.94848 | 1210 ± 363 | 2.5 |
ChD-105 | 41.14066 | 64.95013 | 2071 ± 621 | 18.0 |
ChD-106 | 41.14067 | 64.94468 | 749 ± 225 | 1.9 |
ChD-107 | 41.14134 | 64.95476 | 1376 ± 413 | 16.5 |
ChD-108 | 41.14176 | 64.94262 | 350 ± 105 | 0.9 |
ChD-109 | 41.14246 | 64.94621 | 811 ± 243 | 1.8 |
ChD-110 | 41.14314 | 64.95213 | 457 ± 137 | 15.0 |
ChD-111 | 41.14335 | 64.94421 | 437 ± 131 | 0.8 |
ChD-112 | 41.14412 | 64.94807 | 243 ± 73 | 0.9 |
ChD-113 | 41.14489 | 64.94538 | 372 ± 112 | 0.7 |
ChD-114 | 41.14579 | 64.95084 | 401 ± 120 | 9.5 |
ChD-115 | 41.14638 | 64.95391 | 376 ± 113 | 15.6 |
ChD-116 | 41.14685 | 64.94739 | 228 ± 68 | 0.9 |
ChD-117 | 41.14834 | 64.94957 | 161 ± 48 | 5.6 |
ChD-118 | 41.14855 | 64.95201 | 150 ± 45 | 7.7 |
References
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Pugliese, M.; La Verde, G.; D’Avino, V.; Roca, V. The first radon potential map of the Campania region (southern Italy). Appl. Geochem. 2021, 126, 104890. [Google Scholar] [CrossRef]
- Giustini, F.; Ciotoli, G.; Rinaldini, A.; Ruggiero, L.; Voltaggio, M. Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Sci. Total Environ. 2019, 661, 449–464. [Google Scholar] [CrossRef]
- Miklyaev, P.; Petrova, T. Studies of emanation of clay rocks by radon. Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2010, 1, 13–22. [Google Scholar]
- Baskaran, M. Radon: A Tracer for Geological, Geophysical and Geochemical Studies; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Daraktchieva, Z.; Wasikiewicz, J.M.; Howarth, C.B.; Miller, C.A. Study of baseline radon levels in the context of a shale gas development. Sci. Total Environ. 2021, 753, 141952. [Google Scholar] [CrossRef]
- Loisy, C.; Cerepi, A. Radon-222 as a tracer of water-air dynamics in the unsaturated zone of a geological carbonate formation: Example of an underground quarry (Oligocene Aquitain limestone, France). Chem. Geol. 2012, 296–297, 39–49. [Google Scholar] [CrossRef]
- Kuo, T.; Tsunomori, F. Estimation of fracture porosity using radon as a tracer. J. Pet. Sci. Eng. 2014, 122, 700–704. [Google Scholar] [CrossRef]
- Selvam, S.; Muthukumar, P.; Sajeev, S.; Venkatramanan, S.; Chung, S.Y.; Brindha, K.; Babu, D.S.S.; Murugan, R. Quantification of submarine groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India. Geosci. Front. 2021, 12, 29–38. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Katlamudi, M.; Barman, C.; Lakshmi, G.U. Identification of earthquake precursors in soil radon-222 data of Kutch, Gujarat, India using empirical mode decomposition based Hilbert Huang Transform. J. Environ. Radioact. 2020, 222, 106353. [Google Scholar] [CrossRef]
- Kawabata, K.; Sato, T.; Takahashi, H.A.; Tsunomori, F.; Hosono, T.; Takahashi, M.; Kitamura, Y. Changes in groundwater radon concentrations caused by the 2016 Kumamoto earthquake. J. Hydrol. 2020, 584, 124712. [Google Scholar] [CrossRef]
- Moreno, V.; Bach, J.; Zarroca, M.; Font, L.; Roqué, C.; Linares, R. Characterization of radon levels in soil and groundwater in the North Maladeta Fault area (Central Pyrenees) and their effects on indoor radon concentration in a thermal spa. J. Environ. Radioact. 2018, 189, 1–13. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K.; Miklyaev, P. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface. J. Environ. Radioact. 2016, 160, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Y.; Guan, Z.; Chen, Z.; Zhang, L.; Lv, C.J.; Sun, F. Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan, southwestern of China. Appl. Geochem. 2018, 89, 23–33. [Google Scholar] [CrossRef]
- Domingos, F.; Pereira, A. Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district. Sci. Total Environ. 2018, 622–623, 825–840. [Google Scholar] [CrossRef]
- Pinto, P.V.; Sudeep Kumara, K.; Karunakara, N. Mass exhalation rates, emanation coefficients and enrichment pattern of radon, thoron in various grain size fractions of monazite rich beach placers. Radiat. Meas. 2020, 130, 106220. [Google Scholar] [CrossRef]
- McDowall, G.; Koketso, H. Radon emanometry over some kimberlites and lamproites in Southern and Western Botswana. In Proceedings of the 53rd EAEG Meeting; European Association of Geoscientists & Engineers, Florence, Italy, 26–30 May 1991. [Google Scholar] [CrossRef]
- Bobrov, A. Reflections of some features of the fault zones of the Olkhon and southern Angara regions in radon emanations. Tectonophys. Top. Issues Earth Sci. 2009, 2, 5–9. [Google Scholar]
- Magomedova, A.; Udoratin, V. Volumetric activity of radon in tubes of explosion and magnetic anomalies of the Middle Timan. Bull. IG Komi Sci. Cent. Ural Branch RAS 1991, 10, 28–34. [Google Scholar]
- Kiselev, G.P.; Yakovlev, E.Y.; Druzhinin, S.V.; Zykov, S.B.; Bykov, V.M.; Ocheretenko, A.A. Uranium even isotopes in kimberlites, enclosing and overburden rocks of the Zolotitskoye ore field (Arkhangelsk diamondiferous province). Russ. J. Earth Sci. 2018, 18, ES3002. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, E.Y. Features of radioactive element distribution within the Arkhangelsk diamondiferous province: Possible directions for development of isotope–radiogeochemical methods for kimberlite prospecting in complex landscape–geology and climate conditions of the subarctic zone. Geochem. Explor. Environ. Anal. 2020, 20, 269–279. [Google Scholar] [CrossRef]
- Kiselev, G.P.; Danilov, K.B.; Yakovlev, E.U.; Druzhinin, S.V. Radiometric and seismic study of Chidvinskaya kimberlite pipe (Arkhangelsk diamondiferous province, North of the East European Craton, Russia). Geofísica Int. 2017, 2, 147–155. [Google Scholar]
- Zaripov, N.R. Clarification of the Red-Colored Rocks of the Zimneberezhny Diamondiferous Region of the Arkhangelsk Province and the Nakynsky Diamondiferous Field of the Yakut Province, Its Connection with the Kimberlite Control Structures. Ph.D. Thesis, Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia, 2017. [Google Scholar]
- Yakovlev, E.; Puchkov, A.V. Radon over Kimberlite Pipes: Estimation of the Emanation Properties of Rocks (Lomonosov Diamond Deposit, NW Russia). Appl. Sc. 2021, 11, 6065. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. IAEA Annual Report for 2013. 2013. Available online: https://www.iaea.org/sites/default/files/anrep2013_full_0.pdf (accessed on 2 October 2021).
- Krupp, K.; Baskaran, M.; Brownlee, S.J. Radon emanation coefficients of several minerals: How they vary with physical and mineralogical properties. Am. Mineral. 2017, 102, 1375–1383. [Google Scholar] [CrossRef]
- Banerjee, K.; Basu, A.; Guin, R.; Sengupta, D. Radon (222Rn) level variations on a regional scale from the Singhbhum Shear Zone, India: A comparative evaluation between influence of basement U-activity and porosity. Radiat. Phys. Chem. 2011, 80, 614–619. [Google Scholar] [CrossRef]
- Pereira, A.; Godinho, M.; Neves, L. On the influence of faulting on small-scale soil-gas radon variability: A case study in the Iberian Uranium Province. J. Environ. Radioact. 2010, 101, 875–882. [Google Scholar] [CrossRef]
- Li, Y.; Tan, W.; Tan, K.; Liu, Z.; Fang, Q.; Lv, J.; Duan, X.; Liu, Z.; Guo, Y. The effect of laterite density on radon diffusion behavior. Appl. Radiat. Isot. 2018, 132, 164–169. [Google Scholar] [CrossRef]
- Coletti, C.; Brattich, E.; Cinelli, G.; Cultrone, G.; Maritan, L.; Mazzoli, C.; Mostacci, D.; Tositti, L.; Sassi, R. Radionuclide concentration and radon exhalation in new mix design of bricks produced reusing NORM by-products: The influence of mineralogy and texture. Constr. Build. Mater. 2020, 260, 119820. [Google Scholar] [CrossRef]
- Puchkov, A.V.; Yakovlev, E.Y.; Hasson, N.; Sobrinho, G.A.N.; Tsykareva, Y.V.; Tyshov, A.S.; Lapikov, P.I.; Ushakova, E.V. Radon hazard in permafrost conditions: Current state of research. Geogr. Environ. Sustain. 2021. [Google Scholar] [CrossRef]
- Telford, W.M. Radon mapping in the search for uranium. In Developments in Geophysical Exploration Methods-4; Springer: Dordrecht, The Netherlands, 1983. [Google Scholar] [CrossRef]
- Pavlov, I.V. Mathematical model of the process of radon exhalation from the earth’s surface and criteria for assessing the potential radon hazard of a built-up area. ANRI 1996, 5, 15–26. [Google Scholar]
- Minkin, L. Is diffusion, thermodiffusion, or advection a primary mechanism of indoor radon entry. Radiat. Prot. Dosim. 2002, 102, 153–161. [Google Scholar] [CrossRef]
- Minkin, L. Thermal diffusion of radon in porous media. Radiat. Prot. Dosim. 2003, 106, 267–272. [Google Scholar] [CrossRef]
- Klimshin, A.V.; Kozlova, I.A.; Rybakov, E.N.; Lukovskoy, M. Effect of freezing the surface layer of soil on the radon transport. Vestn. Kamchatskoy Reg. Assotsiatsii 2010, 16, 146–151, (In Russian with English summary). [Google Scholar]
- Livshits, M.; Gulabyants, L. The mathematical solution of the boundary problem of radon transfer in the system “soil-atmosphere-building”. In Fundamental, Exploratory and Applied Research of the Russian Academy of Natural Sciences on Scientific Support for the Development of Architecture, Urban Planning and the Construction Industry of the Russian Federation in 2016; Russian Academy of Natural Sciences: Moscow, Russia, 2017; pp. 218–226, (In Russian with English summary). [Google Scholar]
- Rogers, V.C.; Nielson, K.K. Multiphase radon generation and transport in porous materials. Health Phys. 1991, 60, 807–815. [Google Scholar] [CrossRef]
- Arvela, H. Seasonal variation in radon concentration of 3000 dwellings with model comparisons. Radiat. Prot. Dosim. 1995, 59, 33–42. [Google Scholar] [CrossRef]
- Al-Ahmady, K.K.; Hintenlang, D.E. Assessment of temperature-driven pressure differences with regard to radon entry and indoor radon concentration. In Proceedings of the AARST 1994 International Radon Symposium, Atlantic City, NJ, USA, 25–28 September 1994. [Google Scholar]
- Bakaeva, N.; Kalaydo, A. About the radon transport mechanisms into the buildings. Constr. Reconstr. 2016, 51–59, (In Russian with English summary). [Google Scholar]
- Yakovleva, V.S. Field method for measuring the radon diffusion coefficient and thoron in the ground. Bull. KRAUNZ Phys. Mat. Sci. 2014, 1, 81–85, (In Russian with English summary). [Google Scholar]
- Eremenko, A.V. Features of the composition of chrome-spinels in the explosion pipes of the Izhmozero field of the Arkhangelsk diamondiferous province as a reflection of the geodynamics of their formation. Bull. Voronezh Univ. Geol. 2004, 2, 19–28, (In Russian with English summary). [Google Scholar]
- Eremenko, A.V. Features of the Geological Structure, Material Composition and Geodynamics of the Formation of Pipes for the Explosion of the Izhmozero Field of the Arkhangelsk Diamondiferous Province. Ph.D. Thesis, Russian State Geological Prospecting University, Moscow, Russia, 2004. [Google Scholar]
- Larchenko, V.A.; Stepanov, V.P. Diamond content of kimberlites and related rocks of the Winter Coast. Bull. Voronezh Univ. Geol. 2004, 1, 42–51, (In Russian with English summary). [Google Scholar]
- Russian Federal Geological Fund. Available online: https://rfgf.ru/license/itemview.php?iid=2732581 (accessed on 5 October 2021).
- Afonin, A.; Korchunov, A. Optimizing block parameters measurements for monitoring radon, thoron and their daughter products in various environments. ANRI 2013, 1, 9–11. [Google Scholar]
- Marenniy, A.M.; Tsapalov, A.A.; Miklyaev, P.S.; Petrova, T.B. Regularities Formation of a Radon Field in the Geological Environment; Pero Publishing House: Kiev, Ukraine, 2016; ISBN 9785906883940. [Google Scholar]
- Miklyaev, P.S.; Petrova, T.B. On the radon diffusion coefficient in porous media. ANRI 2019, 4, 12–17. [Google Scholar]
- Danilov, K.B. Revealing Geological Inhomogeneities in the Upper Part of the Earth’s Crust Based on the Analysis of Low-Frequency Microseisms (On the Example of the Arkhangelsk Region). Ph.D. Thesis, Russian State Geological Prospecting University, Moscow, Russia, 2017. [Google Scholar]
Radiation and Physical Characteristics, Range/Mean | ||||
---|---|---|---|---|
ARa226 | Kemanation | Density | D | |
Kimberlites, D3-C2 | 12.42–31.46 | 1.76–10.67 | 1.74–2.35 | 7.0 × 10−6 |
17.59 | 7.14 | 2.06 | ||
Country rocks, V2 | 16.05–63.32 | 6.19–29.13 | 1.47–2.19 | 4.5 × 10−6 |
35.52 | 13.94 | 1.89 | ||
Sandstones with siltstone interlayers, V2 | 12.45–21.4 | 11.82–24.13 | 1.01–1.41 | 1.0 × 10−6 |
18.41 | 15.00 | 1.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakovlev, E.; Puchkov, A. Radon over Kimberlite Pipes: Surface Field Experiments and Calculations of Vertical Diffusion (Arkhangelsk Diamondiferous Province, NW Russia). Appl. Sci. 2021, 11, 11765. https://doi.org/10.3390/app112411765
Yakovlev E, Puchkov A. Radon over Kimberlite Pipes: Surface Field Experiments and Calculations of Vertical Diffusion (Arkhangelsk Diamondiferous Province, NW Russia). Applied Sciences. 2021; 11(24):11765. https://doi.org/10.3390/app112411765
Chicago/Turabian StyleYakovlev, Evgeny, and Andrey Puchkov. 2021. "Radon over Kimberlite Pipes: Surface Field Experiments and Calculations of Vertical Diffusion (Arkhangelsk Diamondiferous Province, NW Russia)" Applied Sciences 11, no. 24: 11765. https://doi.org/10.3390/app112411765
APA StyleYakovlev, E., & Puchkov, A. (2021). Radon over Kimberlite Pipes: Surface Field Experiments and Calculations of Vertical Diffusion (Arkhangelsk Diamondiferous Province, NW Russia). Applied Sciences, 11(24), 11765. https://doi.org/10.3390/app112411765