Effect of Chitosan on the Removal of Different Types of Tannins from Red Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plan
2.2. Tannins and C Addition
2.3. Forced Oxidation Tests
2.4. High-Performance Liquid Chromatography Determination of Acetaldehyde
2.5. High-Performance Liquid Chromatography (HPLC) Analyses of Monomeric and Polymeric Phenolics
2.6. Spectrophotometric Analyses
2.7. Saliva Precipitation Index
2.8. Statistic Analysis
3. Results and Discussion
3.1. The Effect of Chitosan on Wines Rich in Tannins of Different Origin
3.2. Forced Oxidation Trial
3.3. Impact of C and Oxidative Stress on the Reactivity of Wines towards Saliva
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Borsellino, V.; Migliore, G.; D’Acquisto, M.; Di Franco, C.P.; Asciuto, A.; Schimmenti, E. Green’ wine through a responsible and efficient production: A case study of a sustainable Sicilian wine producer. Agric. Agric. Sci. Procedia 2016, 8, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Chiusano, L.; Cerutti, A.K.; Cravero, M.C.; Bruun, S.; Gerbi, V. An industrial ecology approach to solve wine surpluses problem: The case study of an Italian winery. J. Clean. Prod. 2015, 91, 56–63. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Q. Recent advances of chitosan and its derivatives for novel applications in food science. J. Food Process. Beverages 2013, 1, 1–13. [Google Scholar]
- Friedman, M.; Juneja, V.K. Review of antimicrobial and antioxidative activities of chitosans in food. J. Food Prot. 2010, 73, 1737–1761. [Google Scholar] [CrossRef]
- European Union (EU). Commission regulation (EU) 53/2011 of 21 January 2011. Off. J. Eur. Union. 2011, pp. L19/1–L19/6. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:019:0001:0006:EN:PDF (accessed on 5 December 2021).
- Brasselet, C.; Pierre, G.; Dubessay, P.; Dols-Lafargue, M.; Coulon, J.; Maupeu, J.; Delattre, C. Modification of chitosan for the generation of functional derivatives. Appl. Sci. 2019, 9, 1321. [Google Scholar] [CrossRef] [Green Version]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Park, P.; Je, J.; Kim, S. Free radical scavenging activities of differently deacetylated chitosans using an ESR SPECTROMETER. Carbohydr. Polym. 2004, 55, 17–22. [Google Scholar] [CrossRef]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Schreiber, S.B.; Bozell, J.J.; Hayes, D.G.; Zivanovic, S. Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocoll. 2013, 33, 207–214. [Google Scholar] [CrossRef]
- Castro Marín, A.; Culcasi, M.; Cassien, M.; Stocker, P.; Thétiot-Laurent, S.; Robillard, B.; Pietri, S. Chitosan as an antioxidant alternative to sulphites in oenology: EPR investigation of inhibitory mechanisms. Food Chem. 2019, 285, 67–76. [Google Scholar] [CrossRef]
- Taillandier, P.; Joannis-Cassan, C.; Jentzer, J.B.; Gautier, S.; Sieczkowski, N.; Granes, D.; Brandam, C. Effect of a fungal chitosan preparation on Brettanomyces bruxellensis, a wine contaminant. J. Appl. Microbiol. 2015, 118, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Castro Marín, A.; Colangelo, D.; Lambri, M.; Riponi, C.; Chinnici, F. Relevance and perspectives of the use of chitosan in winemaking: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3450–3464. [Google Scholar] [CrossRef]
- Picariello, L.; Rinaldi, A.; Blaiotta, G.; Moio, L.; Pirozzi, P.; Gambuti, A. Effectiveness of chitosan as an alternative to sulfites in red wine production. Eur. Food Res. Technol. 2020, 246, 1795–1804. [Google Scholar] [CrossRef]
- Versari, A.; Du Toit, W.; Parpinello, G.P. Oenological tannins: A review. Aust. J. Grape Wine Res. 2013, 19, 1–10. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Cadahía, E.; Conde, E.; García-Vallejo, M.C. Low molecular weight phenolic compounds in Spanish oak woods. J. Agric. Food Chem. 1996, 44, 1507–1511. [Google Scholar] [CrossRef]
- Jourdes, M.; Pouységu, L.; Quideau, S.; Mattivi, F.; Truchado, P.; Tomás Barberán, F.A. Hydrolyzable tannins: Gallotannins, ellagitannins, and ellagic acid. Handb. Anal. Act. Compd. Funct. Foods 2012, 435–460. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, Volume 2: The Chemistry of Wine Stabilization and Treatments; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Picariello, L.; Rinaldi, A.; Forino, M.; Errichiello, F.; Moio, L.; Gambuti, A. Effect of Different Enological Tannins on Oxygen Consumption, Phenolic Compounds, Color and Astringency Evolution of Aglianico Wine. Molecules 2020, 25, 4607. [Google Scholar] [CrossRef]
- Singleton, V.L.; Trousdale, E.K. Anthocyanin-tannin interactions explaining differences in polymeric phenols between white and red wines. Am. J. Enol. Vitic. 1992, 43, 63–70. [Google Scholar]
- Gambuti, A.; Picariello, L.; Rinaldi, A.; Moio, L. Evolution of Sangiovese wines with varied tannin and anthocyanin ratios during oxidative aging. Front. Chem. 2018, 6, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaldi, A.; Picariello, L.; Soares, S.; Brandão, E.; de Freitas, V.; Moio, L.; Gambuti, A. Effect of oxidation on color parameters, tannins, and sensory characteristics of Sangiovese wines. Eur. Food Res. Technol. 2021, 247, 2977–2991. [Google Scholar] [CrossRef]
- Gambuti, A.; Rinaldi, A.; Pessina, R.; Moio, L. Evaluation of aglianico grape skin and seed polyphenol astringency by SDS–PAGE electrophoresis of salivary proteins after the binding reaction. Food Chem. 2006, 97, 614–620. [Google Scholar] [CrossRef]
- Gambuti, A.; Picariello, L.; Rinaldi, A.; Ugliano, M.; Moio, L. Impact of 5-year bottle aging under controlled oxygen exposure on sulfur dioxide and phenolic composition of tannin-rich red wines. OENO One 2020, 54, 623–636. [Google Scholar] [CrossRef]
- Office International de la Vigne et du Vin. Compendium of International Methods of Wine and Must Analysis; Office International de la Vigne et du Vin: Paris, France, 2019. [Google Scholar]
- Coppola, F.; Picariello, L.; Forino, M.; Moio, L.; Gambuti, A. Comparison of three accelerated oxidation tests applied to red wines with different chemical composition. Molecules 2021, 26, 815. [Google Scholar] [CrossRef]
- Han, G.; Wang, H.; Webb, M.R.; Waterhouse, A.L. A rapid, one step preparation for measuring selected free plus SO2-bound wine carbonyls by HPLC-DAD/MS. Talanta 2015, 134, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Price, S.F.; McCord, J.D. Reversed-phase high-performance liquid chromatography methods for analysis of wine polyphenols. Method Enzymol. 1999, 299, 113–121. [Google Scholar]
- Glories, Y. La couleur des vins rouges: 2e. Partie: Mesure, origine et interpretation. Connaiss. De La Vigne Et Du Vin 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Picciotto, E.A.; Adams, D.O. Measurement of polymeric pigments in grape berry extract sand wines using a protein precipitation assay combined with bisulfite bleaching. Am. J. Enol. Vitic. 2003, 54, 301–306. [Google Scholar]
- Gambuti, A.; Han, G.; Peterson, A.L.; Waterhouse, A.L. Sulfur dioxide and glutathione alter the outcome of microoxygenation. Am. J. Enol. Vitic. 2015, 66, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Rinaldi, A.; Gambuti, A.; Moine-Ledoux, V.; Moio, L. Evaluation of the astringency of commercial tannins by means of the SDS–PAGE-based method. Food Chem. 2010, 122, 951–956. [Google Scholar] [CrossRef]
- Rinaldi, A.; Gambuti, A.; Moio, L. Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency. Food Chem. 2012, 135, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Haslam, E. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J. Nat. Prod. 1996, 59, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Harbertson, J.F.; Parpinello, G.P.; Heymann, H.; Downey, M.O. Impact of exogenous tannin additions on wine chemistry and wine sensory character. Food Chem. 2012, 131, 999–1008. [Google Scholar] [CrossRef]
- Picariello, L.; Gambuti, A.; Picariello, B.; Moio, L. Evolution of pigments, tannins and acetaldehyde during forced oxidation of red wine: Effect of tannins addition. LWT 2017, 77, 370–375. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Mattivi, F.; Waterhouse, A.L. Analysis of red wine phenolics: Comparison of HPLC and spectrophotometric methods. Vitis 2001, 40, 87–91. [Google Scholar]
- Bassi, R.; Prasher, S.O.; Simpson, B.K. Removal of selected metal ions from aqueous solutions using chitosan flakes. Sep. Sci. Technol. 2000, 35, 547–560. [Google Scholar] [CrossRef]
- Dıblan, S.; Özkan, M. Effects of various clarification treatments on anthocyanins, color, phenolics and antioxidant activity of red grape juice. Food Chem. 2021, 352, 129321. [Google Scholar] [CrossRef]
- Spagna, G.; Pifferi, P.G.; Rangoni, C.; Mattivi, F.; Nicolini, G.; Palmonari, R. The stabilization of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Res. Int. 1996, 29, 241–248. [Google Scholar] [CrossRef]
- Picariello, L.; Gambuti, A.; Petracca, F.; Rinaldi, A.; Moio, L. Enological tannins affect acetaldehyde evolution, colour stability and tannin reactivity during forced oxidation of red wine. Int. J. Food Sci. Technol. 2018, 53, 228–236. [Google Scholar] [CrossRef]
- Castro Marin, A.; Chinnici, F. Physico-Chemical Features of Sangiovese Wine as Affected by a Post-Fermentative Treatment with Chitosan. Appl. Sci. 2020, 10, 6877. [Google Scholar] [CrossRef]
- Bautista-Ortín, A.B.; Martínez-Cutillas, A.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. Improving colour extraction and stability in red wines: The use of maceration enzymes and enological tannins. Int. J. Food Sci. Technol. 2005, 40, 867–878. [Google Scholar] [CrossRef]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Colour difference∆ E-A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Vignault, A.; González-Centeno, M.R.; Pascual, O.; Gombau, J.; Jourdes, M.; Moine, V.; Teissedre, P.L. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018, 268, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Chinnici, F.; Natali, N.; Riponi, C. Efficacy of chitosan in inhibiting the oxidation of (+)-catechin in white wine model solutions. J. Agric. Food Chem. 2014, 62, 9868–9875. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Laurie, V.F. Oxidation of wine phenolics: A critical evaluation and hypotheses. Am. J. Enol. Vitic. 2006, 57, 306–313. [Google Scholar]
- Timberlake, C.F.; Bridle, P. Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic. 1976, 27, 97–105. [Google Scholar]
- Atanasova, V.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Effect of oxygenation on polyphenol changes occurring in the course of winemaking. Anal. Chim. Acta 2002, 458, 15–27. [Google Scholar] [CrossRef]
Total Native Anthocyanins (mg/L) | Polymeric Pigments (mg/L) | Acetaldehyde (mg/L) | ||||
---|---|---|---|---|---|---|
W | 1330.18 ± 20.44 | * A | 137.30 ± 9.39 | C | 11.74 ± 0.10 | AB |
W-C | 1231.73 ± 13.07 | a | 136.74 ± 24.49 | c | 11.81 ± 0.23 | a |
CT | 1235.17 ± 27.14 | B | 204.92 ± 34.33 | B | 11.75 ± 0.07 | B |
CT-C | 1137.24 ± 74.98 | a | 207.01 ± 18.26 | b | 11.83 ± 0.05 | a |
ET | 1173.72 ± 44.15 | C | 216.44 ± 2.40 | * B | 11.90 ± 0.09 | AB |
ET-C | 1147.02 ± 29.01 | a | 199.27 ± 3.60 | b | 11.76 ± 0.06 | a |
GT | 1185.37 ± 16.59 | * BC | 264.72 ± 6.49 | * A | 11.92 ± 0.02 | A |
GT-C | 1132.69 ± 25.32 | a | 246.25 ± 4.40 | a | 11.88 ± 0.04 | a |
Delphinidin 3-Glucoside (mg/L) | Cyanidin 3-Glucoside (mg/L) | Petunidin 3-Glucoside (mg/L) | Peonidin 3-Glucoside (mg/L) | Malvidin 3-Glucoside (mg/L) | Malvidin 3-(6II-Acetyl)-Glucoside (mg/L) | Malvidin 3-(6II-Coumaroyl)-Glucoside (mg/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | 248.92 ± 14.36 | * A | 10.97 ± 0.76 | AB | 174.10 ± 4.40 | * A | 91.77 ± 0.64 | B | 609.42 ± 16.31 | * A | 150.20 ± 2.50 | * A | 44.80 ± 1.48 | AB |
W-C | 204.16 ± 6.36 | a | 9.96 ± 0.54 | b | 162.20 ± 4.06 | a | 89.67 ± 3.78 | a | 577.55 ± 8.49 | a | 144.79 ± 1.41 | a | 43.40 ± 1.85 | a |
CT | 242.62 ± 20.99 | AB | 7.85 ± 1.08 | C | 169.50 ± 4.96 | * AB | 98.58 ± 3.27 | * A | 520.92 ± 17.89 | B | 148.40 ± 3.00 | A | 47.28 ± 2.03 | A |
CT-C | 214.95 ± 24.50 | a | 9.80 ± 0.83 | b | 154.95 ± 4.54 | ab | 92.38 ± 1.22 | a | 470.10 ± 31.68 | c | 140.01 ± 6.77 | a | 55.04 ± 17.57 | a |
ET | 205.24 ± 22.95 | BC | 9.48 ± 1.14 | BC | 155.15 ± 9.65 | C | 90.33 ± 2.78 | B | 549.18 ± 6.10 | * B | 126.45 ± 14.41 | B | 37.89 ± 1.10 | C |
ET-C | 201.81 ± 22.04 | a | 10.05 ± 0.70 | b | 146.95 ± 4.12 | b | 88.39 ± 2.16 | a | 527.28 ± 5.00 | ab | 131.95 ± 8.51 | ab | 40.59 ± 3.61 | a |
GT | 203.45 ± 4.72 | * C | 11.69 ± 0.21 | A | 158.82 ± 3.18 | * BC | 93.90 ± 1.59 | AB | 544.34 ± 26.09 | B | 129.31 ± 7.75 | B | 43.87 ± 0.99 | B |
GT-C | 194.60 ± 3.22 | a | 12.68 ± 1.07 | a | 152.31 ± 1.29 | b | 90.03 ± 4.73 | a | 516.52 ± 26.71 | bc | 124.36 ± 6.41 | b | 42.19 ± 2.51 | a |
Total Anthocyanins (mg/L) | Colour Intensity (420 nm + 520 nm + 620 nm abs units) | Tonality (420 nm/520 nm) | ||||
---|---|---|---|---|---|---|
W | 301.32 ± 2.77 | * AB | 4.11 ± 0.10 | * B | 0.54 ± 0.01 | B |
W-C | 288.90 ± 3.00 | a | 3.83 ± 0.07 | c | 0.53 ± 0.00 | a |
CT | 308.01 ± 4.38 | * A | 4.38 ± 0.27 | * A | 0.61 ± 0.05 | * A |
CT-C | 292.13 ± 1.91 | a | 3.96 ± 0.03 | ab | 0.56 ± 0.00 | a |
ET | 307.79 ± 5.20 | * A | 4.25 ± 0.03 | * AB | 0.57 ± 0.00 | *AB |
ET-C | 289.63 ± 2.37 | a | 4.02 ± 0.17 | a | 0.53 ± 0.02 | a |
GT | 298.01 ± 1.56 | * B | 4.19 ± 0.08 | * B | 0.53 ± 0.00 | * B |
GT-C | 285.96 ± 4.37 | a | 3.87 ± 0.06 | bc | 0.53 ± 0.00 | a |
ΔE | ||
---|---|---|
W-WC | 1.99 ± 0.59 | b |
CT-CT C | 2.73 ± 0.73 | b |
ET-ET C | 4.37 ± 0.54 | a |
GT-GT C | 2.81 ± 0.89 | b |
Total Native Anthocyanins (mg/L) | Polymeric Pigments (mg/L) | Acetaldehyde (mg/L) | ||||
---|---|---|---|---|---|---|
Wo | 58.10 ± 4.02 | A β | 367.88 ± 13.67 | * C ⲁ | 66.10 ± 0.30 | * A ⲁ |
W-Co | 46.77 ± 6.66 | a β | 331.01 ± 5.39 | b ⲁ | 62.76 ± 0.34 | a ⲁ |
CTo | 50.62 ± 7.99 | A β | 507.34 ± 12.28 | * A ⲁ | 64.27 ± 0.13 | * C ⲁ |
CT-Co | 46.39 ± 2.27 | ab β | 418.53 ± 15.84 | a ⲁ | 60.74 ± 0.13 | b ⲁ |
ETo | 49.74 ± 0.23 | * A β | 330.24 ± 2.02 | * D ⲁ | 64.69 ± 0.30 | * C ⲁ |
ET-Co | 38.78 ± 0.67 | b β | 265.16 ± 2.18 | c ⲁ | 58.47 ± 0.57 | d ⲁ |
GTo | 46.33 ± 6.67 | * A β | 416.83 ± 4.08 | * B ⲁ | 65.42 ± 0.15 | * B ⲁ |
GT-Co | 41.33 ± 1.18 | ab β | 337.17 ± 8.56 | b ⲁ | 59.71 ± 0.12 | c ⲁ |
Delphinidin 3-Glucoside (mg/L) | Cyanidin 3-Glucoside (mg/L) | Petunidin 3-Glucoside (mg/L) | Peonidin 3-Glucoside (mg/L) | Malvidin 3-Glucoside (mg/L) | Malvidin 3-(6II-Acetyl)-Glucoside (mg/L) | Malvidin 3-(6II- Coumaroyl)-Glucoside (mg/L) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Wo | 5.88 ± 0.92 | AB β | ND | 6.20 ± 0.91 | * A β | ND | 30.79 ± 1.08 | A β | 10.92 ± 1.94 | * A β | ND |
W-Co | 4.76 ± 1.02 | ab β | ND | 4.13 ± 0.69 | a β | ND | 26.24 ± 6.66 | a β | 7.40 ± 0.34 | a β | ND |
CTo | 5.61 ± 0.78 | A β | ND | 4.45 ± 0.75 | A β | ND | 26.71 ± 5.41 | A β | 9.18 ± 1.37 | A β | ND |
CT-Co | 5.40 ± 1.02 | a β | ND | 4.91 ± 0.83 | a β | ND | 24.67 ± 2.52 | a β | 6.91 ± 1.55 | ab β | ND |
ETo | 4.26 ± 0.41 | BC β | ND | 4.55 ± 0.77 | A β | ND | 27.30 ± 0.12 | * A β | 10.66 ± 0.38 | * A β | ND |
ET-Co | 3.16 ± 0.93 | b β | ND | 3.71 ± 0.67 | a β | ND | 22.44 ± 0.05 | a β | 5.48 ± 0.02 | b β | ND |
GTo | 3.64 ± 0.44 | * C β | ND | 4.41 ± 0.86 | A β | ND | 26.85 ± 3.27 | A β | 7.75 ± 1.41 | A β | ND |
GT-Co | 2.99 ± 0.27 | b β | ND | 3.97 ± 0.17 | a β | ND | 24.59 ± 0.54 | a β | 6.78 ± 0.63 | ab β | ND |
Total Anthocyanins (mg/L) | Colour Intensity (420 nm + 520 nm + 620 nm) | Tonality (420 nm/520 nm) | ||||
---|---|---|---|---|---|---|
Wo | 114.49 ± 2.11 | * C β | 3.01 ± 0.16 | * A β | 0.73 ± 0.01 | * B ⲁ |
W-Co | 104.63 ± 0.56 | b β | 2.62 ± 0.13 | ab β | 0.75 ± 0.00 | a ⲁ |
CTo | 123.16 ± 2.04 | * A β | 2.99 ± 0.21 | A β | 0.74 ± 0.00 | AB ⲁ |
CT-Co | 110.74 ± 1.74 | a β | 2.64 ± 0.17 | a β | 0.74 ± 0.00 | a ⲁ |
ETo | 119.56 ± 1.28 | * AB β | 2.83 ± 0.12 | * A β | 0.73 ± 0.01 | * B ⲁ |
ET-Co | 94.26 ± 1.67 | c β | 2.27 ± 0.20 | b β | 0.77 ± 0.01 | a ⲁ |
GTo | 118.09 ± 0.88 | * BC β | 2.91 ± 0.11 | * A β | 0.79 ± 0.06 | A ⲁ |
GT-Co | 95.81 ± 2.08 | c β | 2.64 ± 0.15 | a β | 0.78 ± 0.00 | a ⲁ |
ΔE | ||
---|---|---|
Wo-WCo | 2.79 ± 0.50 | c |
CTo-CT Co | 3.49 ± 0.38 | c |
ETo-ET Co | 7.64 ± 0.11 | a |
GTo-GT Co | 5.09 ± 0.18 | b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picariello, L.; Errichiello, F.; Coppola, F.; Rinaldi, A.; Moio, L.; Gambuti, A. Effect of Chitosan on the Removal of Different Types of Tannins from Red Wines. Appl. Sci. 2021, 11, 11743. https://doi.org/10.3390/app112411743
Picariello L, Errichiello F, Coppola F, Rinaldi A, Moio L, Gambuti A. Effect of Chitosan on the Removal of Different Types of Tannins from Red Wines. Applied Sciences. 2021; 11(24):11743. https://doi.org/10.3390/app112411743
Chicago/Turabian StylePicariello, Luigi, Francesco Errichiello, Francesca Coppola, Alessandra Rinaldi, Luigi Moio, and Angelita Gambuti. 2021. "Effect of Chitosan on the Removal of Different Types of Tannins from Red Wines" Applied Sciences 11, no. 24: 11743. https://doi.org/10.3390/app112411743