Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province
Abstract
:1. Introduction
2. Description of the Study Area
3. Materials and Methods
3.1. Sample Collection and Analysis
3.2. Multivariate Statistical Analyses
4. Results and Discussion
4.1. Hydrochemistry
4.2. Spatial Distribution Characteristics of Groundwater Chemistry
4.2.1. Hydrogeochemical Facies
4.2.2. Spatial Distribution Pattern of Ions
Spatial Distribution Pattern of Ions in Shallow Groundwater
Spatial Distribution Pattern of Ions in Deep Groundwater
4.3. Analysis of the Causes of Groundwater Chemistry Types
4.3.1. Groundwater Chemistry Control Mechanisms
4.3.2. Major Ion Ratio Relationship
4.4. Hydrogeochemical Simulation and Analysis
4.4.1. Mineral Saturation Index Analysis
4.4.2. Analysis of the Effect of pH on Minerals
5. Conclusions
- 1.
- The hydrochemical type of groundwater in the study area have obvious differences in the horizontal and the vertical directions, reflecting the influence of the chromium slag pile on groundwater. In the shallow groundwater, the groundwater below the chromium slag heap is the SO4-HCO3-Na type, the hydrogeochemical composition east of the chromium slag heap and in the midstream is the HCO3-Cl-Mg-Ca type, and the downstream is basically uncontaminated with the HCO3-Mg-Ca-Na type. The deep groundwater shows the HCO3 type.
- 2.
- Gibbs plots, ion ratios and saturation index indicated that the hydrogeochemical characteristics of the study area are mainly controlled by water-rock action and evaporative crystallization, with dissolution of halite, gypsum and anhydrite, precipitation of aragonite, calcite and dolomite, and precipitation of trivalent chromium minerals other than CrCl3 and dissolution of hexavalent chromium minerals occurring in the groundwater of the site.
- 3.
- The groundwater in the study area is generally alkaline with a minimum pH of 7.55, which is conducive to the precipitation of trivalent chromium and the dissolution of hexavalent chromium. With the increase of pH, the saturation index of dolomite, calcite, aragonite and MgCr2O4 keeps increasing, and these minerals are more likely to precipitate. The saturation index of Na2Cr2O7, K2Cr2O7 and CrCl3 is decreasing, and the more easily Na2Cr2O7, K2Cr2O7 and CrCl3 dissolve, and the saturation index of the remaining minerals is less affected by the change of pH.
- 4.
- Currently, the groundwater at the site is heavily contaminated and the groundwater chemistry type is altered. First, we should analyze the effects of other contaminants on chromium remediation in conjunction with indoor experiments. Second, we should maintain the concept of joint management of soil and groundwater. Third, the site groundwater runoff conditions are relatively poor and can be remediated by permeable reactive barriers technology and in situ injection of pharmaceuticals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, X.; Xiao, Y.; Yin, S.; Shao, J.; Pan, X.; Niu, Y.; Huang, J. Groundwater level response to hydrogeological factors in a semi-arid basin of Beijing, China. J. Water Supply Res. Technol. 2017, 66, 266–278. [Google Scholar] [CrossRef]
- Elgallal, M.; Fletcher, L.; Evans, B. Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agric. Water Manag. 2016, 177, 419–431. [Google Scholar] [CrossRef]
- Esmaeili-Vardanjani, M.; Rasa, I.; Amiri, V.; Yazdi, M.; Pazand, K. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran. Environ. Monit. Assess. 2015, 187, 53. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Gu, X.; Yin, S.; Shao, J.; Cui, Y.; Zhang, Q.; Niu, Y. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. SpringerPlus 2016, 5, 425. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Zhang, X.; Liang, P. Influence of drip irrigation by reclaimed water on the dynamic change of the nitrogen element in soil and tomato yield and quality. J. Clean. Prod. 2016, 139, 561–566. [Google Scholar] [CrossRef]
- Bai, B.; Jiang, S.; Liu, L.; Li, X.; Wu, H. The transport of silica powders and lead ions under unsteady flow and variable injection concentrations. Powder Technol. 2021, 387, 22–30. [Google Scholar] [CrossRef]
- Megharaj, M.; Avudainayagam, S.; Naidu, R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbiol. 2003, 47, 51–54. [Google Scholar] [CrossRef]
- Yang, G.; Xia, J. Chromium Contamination Accident in China: Viewing Environment Policy of China. Environ. Sci. Technol. 2011, 45, 8605–8606. [Google Scholar]
- Priti, S.; Vipin, B.; Agarwal, S.K.; Vipin, V.; Kesavachandran, C.N.; Pangtey, B.S.; Neeraj, M.; Pal, S.K.; Mithlesh, S.; Goel, S.K. Groundwater Contaminated with Hexavalent Chromium [Cr (VI)]: A Health Survey and Clinical Examination of Community Inhabitants (Kanpur, India). PLoS ONE 2012, 7, e47877. [Google Scholar]
- Hori, M.; Shozugawa, K.; Matsuo, M. Hexavalent chromium pollution caused by dumped chromium slag at the urban park in Tokyo. J. Mater. Cycles Waste Manag. 2015, 17, 201–205. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwary, R.K.; Srivastava, K.K. Physico-Chemical Analysis and Correlation Study of Water Resources of the Sukinda Chromite Mining Area, Odisha, India. Mine Water Environ. 2017, 36, 356–362. [Google Scholar] [CrossRef]
- Bai, B.; Nie, Q.; Zhang, Y.; Wang, X.; Hu, W. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage. J. Hydrol. 2021, 597, 125771. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Y.; Hu, H.; Zhao, K.; Li, H.; Yan, S.; Xiu, W.; Coyte, R.M.; Vengosh, A. High Hexavalent Chromium Concentration in Groundwater from a Deep Aquifer in the Baiyangdian Basin of the North China Plain. Environ. Sci. Technol. 2020, 54, 10068–10077. [Google Scholar] [CrossRef]
- Bai, B.; Rao, D.; Chang, T.; Guo, Z. A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. J. Hydrol. 2019, 578, 124080. [Google Scholar] [CrossRef]
- Bai, B.; Long, F.; Rao, D.; Xu, T. The effect of temperature on the seepage transport of suspended particles in a porous medium. Hydrol. Process. 2017, 31, 382–393. [Google Scholar] [CrossRef]
- Lockhart, K.M.; King, A.M.; Harter, T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J. Contam. Hydrol. 2013, 151, 140–154. [Google Scholar] [CrossRef]
- Alam, F. Evaluation of hydrogeochemical parameters of groundwater for suitability of domestic and irrigational purposes: A case study from central Ganga Plain, India. Arab. J. Geosci. 2014, 7, 4121–4131. [Google Scholar] [CrossRef]
- Yang, J.; Graf, T.; Ptak, T. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study. J. Contam. Hydrol. 2015, 177–178, 107–121. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Qian, H. Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: A case study in and around Hua County, China. Arab. J. Geosci. 2016, 9, 15. [Google Scholar] [CrossRef]
- Nematollahi, M.J.; Ebrahimi, P.; Razmara, M.; Ghasemi, A. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environ. Monit. Assess. 2016, 188, 2. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Pisciotta, A.; Maio, M.D. Evaluation of groundwater salinization and pollution level on Favignana Island, Italy. Environ. Pollut. 2019, 249, 969–981. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Hayati, M.; Jabbari, N.; Barzegar, R. Risk assessment and ranking of heavy metals concentration in Iran’s Rayen groundwater basin using linear assignment method. Stoch. Environ. Res. Risk Assess. 2018, 32, 1317–1336. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Jabbari, N. Evaluation of groundwater quality and assessment of pollution indices for heavy metals in North of Isfahan Province, Iran. Sustain. Water Resour. Manag. 2019, 5, 491–512. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H. Hydrogeochemistry study and groundwater quality assessment in the north of Isfahan, Iran. Environ. Geochem. Health 2018, 40, 583–608. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Hassani, S.; Jabbari, N.; Fard Mousavi, S.B.; Rezaei, S. Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundw. Sustain. Dev. 2019, 9, 100245. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Tziritis, E.; Fard Mousavi, S.B.; Jabbari, N. Hydrochemical characterization and evaluation of groundwater quality in Dalgan basin, SE Iran. Groundw. Sustain. Dev. 2020, 10, 100353. [Google Scholar] [CrossRef]
- Xiao, Y.; Gu, X.; Yin, S.; Pan, X.; Shao, J.; Cui, Y. Investigation of Geochemical Characteristics and Controlling Processes of Groundwater in a Typical Long-Term Reclaimed Water Use Area. Water 2017, 9, 800. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shi, Z.; Wang, G. Hydrochemical characteristics and evolutionary laws of groundwater in Dachaidan area, Qaidam Basin. Earth Sci. Front. 2020, 28, 194. [Google Scholar]
- Tiwari, A.K.; Orioli, S.; De Maio, M. Assessment of groundwater geochemistry and diffusion of hexavalent chromium contamination in an industrial town of Italy. J. Contam. Hydrol. 2019, 225, 103503. [Google Scholar] [CrossRef]
- Laxmankumar, D.; Satyanarayana, E.; Dhakate, R.; Saxena, P.R. Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India–ScienceDirect. Groundw. Sustain. Dev. 2019, 8, 474–483. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, T.; Zhang, Z.; Liang, W. Remediation of hexavalent chromium in column by green synthesized nanoscale zero-valent iron/nickel: Factors, migration model and numerical simulation. Ecotoxicol. Environ. Saf. 2021, 207, 111572. [Google Scholar] [CrossRef] [PubMed]
- Hausladen, D.M.; Fendorf, S. Hexavalent Chromium Generation within Naturally Structured Soils and Sediments. Environ. Sci. Technol. 2017, 51, 2058–2067. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, G.; Wang, M.; Wang, D.; Cai, D.; Wu, Z. Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres. Chem. Eng. J. 2018, 334, 400–409. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Yan, X.; Meng, X.; Chen, Y. Processes of chromium (VI) migration and transformation in chromate production site: A case study from the middle of China. Chemosphere 2020, 257, 127282. [Google Scholar] [CrossRef]
- Hausladen, D.M.; Alexander-Ozinskas, A.; Mcclain, C.; Fendorf, S. Hexavalent Chromium Sources and Distribution in California Groundwater. Environ. Sci. Technol. 2018, 52, 782–792. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Mousavi, S.B.F.; Jabbari, N. Evaluation Of Heavy Metals Concentration In Jajarm Bauxite Deposit In Northeast Of Iran Using Environmental Pollution Indices. Malays. J. Geosci. 2019, 3, 12–20. [Google Scholar] [CrossRef]
- Esmaeili, A.; Moore, F.; Keshavarzi, B. Nitrate contamination in irrigation groundwater, Isfahan, Iran. Environ. Earth Sci. 2014, 72, 2511–2522. [Google Scholar] [CrossRef]
- Bai, B.; Xu, T.; Nie, Q.; Li, P. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils. Int. J. Heat Mass Transf. 2020, 153, 119573. [Google Scholar] [CrossRef]
- Wagh, V.M.; Panaskar, D.B.; Varade, A.M.; Mukate, S.V.; Gaikwad, S.K.; Pawar, R.S.; Muley, A.; Aamalawar, M.L. Major ion chemistry and quality assessment of the groundwater resources of Nanded tehsil, a part of southeast Deccan Volcanic Province, Maharashtra, India. Environ. Earth Sci. 2016, 75, 1418. [Google Scholar] [CrossRef]
- Karagüzel, R.; Irlayici, A. Groundwater pollution in the Isparta Plain, Turkey. Environ. Geol. 1998, 34, 303–308. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Kanagaraj, G.; Elango, L. Hydrogeochemical processes and impact of tanning industries on groundwater quality in Ambur, Vellore district, Tamil Nadu, India. Environ. Sci. Pollut. Res. Int. 2016, 23, 24364–24383. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, J.; Cui, Y.; Zhang, G.; Zhang, Q. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China. J. Earth Syst. Sci. 2017, 126, 26. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Xie, Y.; Song, F.; Wei, Y.; Zhang, J. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China. Hydrogeol. J. 2016, 24, 1967–1979. [Google Scholar] [CrossRef]
- Zhu, G.; Wu, X.; Ge, J.; Liu, F.; Wu, C. Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM). J. Clean. Prod. 2020, 257, 120664. [Google Scholar] [CrossRef]
Index | Shallow Groundwater | Deep Groundwater | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | C.V./% | Min | Max | Mean | SD | C.V./% | |
pH | 7.55 | 9.26 | 8.03 | 0.32 | 3.99 | 7.80 | 8.34 | 8.19 | 0.19 | 2.27 |
TDS | 738.36 | 2532.60 | 1206.26 | 389.76 | 32.31 | 504.00 | 1198.26 | 798.04 | 185.94 | 23.30 |
SO42− | 100.94 | 1963.05 | 413.64 | 403.01 | 97.43 | 8.61 | 475.94 | 160.72 | 125.68 | 78.20 |
Cl− | 83.05 | 461.59 | 204.31 | 72.86 | 35.66 | 7.81 | 206.98 | 109.56 | 45.42 | 41.46 |
NO3− | 0.56 | 322.92 | 117.82 | 81.63 | 69.28 | 3.95 | 200.17 | 70.75 | 57.29 | 80.97 |
NO2− | 0.00 | 2.43 | 0.39 | 0.61 | 156.41 | 0.00 | 1.29 | 0.25 | 0.31 | 123.05 |
Na+ | 77.34 | 1372.00 | 292.15 | 266.48 | 91.21 | 63.94 | 322.5 | 129.35 | 62.76 | 48.52 |
Fe | 0.04 | 4.88 | 1.09 | 1.05 | 96.33 | 0.01 | 1.64 | 0.49 | 0.45 | 91.63 |
Mn | 0.01 | 7.17 | 0.53 | 1.05 | 198.11 | 0.00 | 1.36 | 0.26 | 0.35 | 132.48 |
NH4+ | 0.00 | 1.80 | 0.12 | 0.30 | 250.00 | 0.00 | 0.50 | 0.07 | 0.15 | 230.90 |
As | 0.00 | 0.10 | 0.005 | 0.02 | 400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Pb | 0.00 | 0.02 | 0.002 | 0.004 | 200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Cr(VI) | 0.00 | 299.99 | 18.34 | 50.86 | 277.32 | 0.00 | 56.30 | 8.31 | 17.85 | 214.79 |
Fe3+ | 0.04 | 2.55 | 0.70 | 0.65 | 92.86 | 0.01 | 1.01 | 0.31 | 0.30 | 96.93 |
CO32− | 0.00 | 40.76 | 1.17 | 5.50 | 470.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
HCO3− | 298.39 | 1052.65 | 589.11 | 140.58 | 23.86 | 389.56 | 687.95 | 518.25 | 83.32 | 16.08 |
K+ | 0.38 | 14.48 | 1.45 | 2.04 | 140.69 | 0.45 | 3.23 | 0.80 | 0.61 | 75.94 |
Ca2+ | 15.57 | 231.90 | 143.59 | 34.95 | 24.34 | 38.54 | 148.10 | 101.48 | 30.01 | 29.58 |
Mg2+ | 26.65 | 246.90 | 117.38 | 32.88 | 28.01 | 52.27 | 143.50 | 95.11 | 24.25 | 25.49 |
Cr | 0.00 | 332.90 | 21.81 | 57.36 | 263.00 | 0.00 | 63.28 | 10.41 | 21.69 | 208.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zhang, Y.; Shi, W.; Cui, Y.; Zhang, Q.; Shi, Y.; Liang, Z. Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province. Appl. Sci. 2021, 11, 11683. https://doi.org/10.3390/app112411683
Chen W, Zhang Y, Shi W, Cui Y, Zhang Q, Shi Y, Liang Z. Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province. Applied Sciences. 2021; 11(24):11683. https://doi.org/10.3390/app112411683
Chicago/Turabian StyleChen, Wenfang, Yaobin Zhang, Weiwei Shi, Yali Cui, Qiulan Zhang, Yakun Shi, and Zexin Liang. 2021. "Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province" Applied Sciences 11, no. 24: 11683. https://doi.org/10.3390/app112411683
APA StyleChen, W., Zhang, Y., Shi, W., Cui, Y., Zhang, Q., Shi, Y., & Liang, Z. (2021). Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province. Applied Sciences, 11(24), 11683. https://doi.org/10.3390/app112411683