The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C60 Hot Isostatic Pressing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Details
2.2.1. HIP Treatment
2.2.2. Characterization
3. Results and Discussion
3.1. Pristine Fullerite C60 Study
3.2. HIP-Treated Fullerite C60 Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Krätschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: A new form of carbon. Nature 1990, 347, 354–358. [Google Scholar] [CrossRef]
- Howard, J.B.; McKinnon, J.T.; Makarovsky, Y.; Lafleur, A.L.; Johnson, M.E. Fullerenes C60 and C70 in flames. Nature 1991, 352, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.M.; Chen, C.C. Preparation of fullerenes and fullerene based materials. In Solid State Physics; Ehrenreich, H., Spaepen, F., Eds.; Academic Press: New York, NY, USA, 1994; Volume 48, pp. 109–148. [Google Scholar]
- Kim, Y.-H.; Lee, I.-H.; Chang, K.J.; Lee, S. Dynamics of fullerene coalescence. Phys. Rev. Lett. 2003, 90, 065501. [Google Scholar] [CrossRef] [Green Version]
- Stafström, S.; Fagerström, J. Electronic structure and stability of fullerene polymers. Appl. Phys. A Mater. Sci. Process. 1997, 64, 307–314. [Google Scholar] [CrossRef]
- Bandow, S.; Takizawa, M.; Hirahara, K.; Yudasaka, M.; Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 2001, 337, 48–54. [Google Scholar] [CrossRef]
- Brazhkin, V.V.; Lyapin, A.G.; Solozhenko, V.L.; Bugakov, V.I.; Dub, S.N.; Kurakevych, O.O.; Kondrin, M.V.; Gromnitskaya, E.L. High-temperature transitions of C60 at moderate pressures. Fuller. Nanotub. Carbon Nanostruct. 2008, 16, 475–485. [Google Scholar] [CrossRef]
- Tat’yanin, E.V.; Lyapin, A.G.; Mukhamadiarov, V.V.; Brazhkin, V.V.; Vasiliev, A.L. Mechanism of formation of the superhard disordered graphite-like phase from fullerite C60 under pressure. J. Phys. Condens. Matter 2005, 17, 249–256. [Google Scholar] [CrossRef]
- Duclos, S.J.; Brister, K.; Haddon, R.C.; Kortan, A.R.; Thiel, F.A. Effects of pressure and stress on C60 fullerite to 20 GPa. Nature 1991, 351, 380–382. [Google Scholar] [CrossRef]
- Samara, G.A.; Schirber, J.E.; Morosin, B.; Hansen, L.V.; Loy, D.; Sylwester, A.P. Pressure dependence of the orientational ordering in solid C60. Phys. Rev. Lett. 1991, 67, 3136–3139. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.S.; Nellis, W.J. Phase transformations in carbon fullerenes at high shock pressures. Science 1991, 254, 1489–1491. [Google Scholar] [CrossRef]
- Kriza, G.; Ameline, J.-C.; Jérome, D.; Dworkin, A.; Szwarc, H.; Fabre, C.; Schütz, D.; Rassat, A.; Bernier, P.; Zahab, A. Pressure dependence of the structural phase transition in C60. J. Phys. I Fr. 1991, 1, 1361–1364. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.S.; Nellis, W.J. Phase transition from C60 molecules to strongly interacting C60 agglomerates at hydrostatic high pressures. Chem. Phys. Lett. 1992, 198, 379–382. [Google Scholar] [CrossRef]
- Moshary, F.; Chen, N.H.; Silvera, I.F.; Brown, C.A.; Dorn, H.C.; de Vries, M.S.; Bethune, D.S. Gap reduction and the collapse of solid C60 to a new phase of carbon under pressure. Phys. Rev. Lett. 1992, 69, 466–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamawaki, H.; Yoshida, M.; Kakudate, Y.; Usuba, S.; Yokoi, H.; Fujiwara, S.; Aoki, K.; Ruoff, R.; Malhotra, R.; Lorents, D. Infrared study of vibrational property and polymerization of fullerene C60 and C70 under pressure. J. Phys. Chem. 1993, 97, 11161–11163. [Google Scholar] [CrossRef]
- Bashkin, I.O.; Rashchupkin, V.I.; Gurov, A.F.; Moravsky, A.P.; Rybchenkot, O.G.; Kobelev, N.P.; Soifer, Y.M.; Ponyatovsky, E.G. A new phase transition in the T-P diagram of C60 fullerite. J. Phys. Condens. Matter 1994, 6, 7491–7498. [Google Scholar] [CrossRef]
- Iwasa, Y.; Arima, T.; Fleming, R.M.; Siegrist, T.; Zhou, O.; Haddon, R.C.; Rothberg, L.J.; Lyons, K.B.; Carter, H.L.; Hebard, A.F.; et al. New phases of C60 synthesized at high pressure. Science 1994, 264, 1570–1572. [Google Scholar] [CrossRef]
- Núñez-Regueiro, M.; Marques, L.; Hodeau, J.-L.; Béthoux, O.; Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 1995, 74, 278–281. [Google Scholar] [CrossRef]
- Blank, V.; Popov, M.; Buga, S.; Davydov, V.; Denisov, V.N.; Ivlev, A.N.; Marvin, B.N.; Agafonov, V.; Ceolin, R.; Szwarc, H.; et al. Is C60 fullerite harder than diamond? Phys. Lett. A 1994, 188, 281–286. [Google Scholar] [CrossRef]
- Sundqvist, B. Fullerenes under high pressures. Adv. Phys. 1999, 48, 1–134. [Google Scholar] [CrossRef]
- Blank, V.D.; Buga, S.G.; Dubitsky, G.A.; Serebryanaya, N.R.; Popov, M.Y.; Sundqvist, B. High-pressure polymerized phases of C60. Carbon 1998, 36, 319–343. [Google Scholar] [CrossRef]
- Brazhkin, V.V.; Lyapin, A.G.; Popova, S.V.; Bayliss, S.C.; Varfolomeeva, T.D.; Voloshin, R.N.; Gavrilyuk, A.G.; Kondrin, M.V.; Mukhamad’yarov, V.V.; Troyan, I.A.; et al. Interplay between the structure and properties of new metastable carbon phases obtained under high pressures from fullerite C60 and carbyne. J. Exp. Theor. Phys. Lett. 2002, 76, 681–692. [Google Scholar] [CrossRef]
- Wood, R.A.; Lewis, M.H.; West, G.; Bennington, S.M.; Cain, M.G.; Kitamura, N. Transmission electron microscopy, electron diffraction and hardness studies of high-pressure and high-temperature treated C60. J. Phys. Condens. Matter 2000, 12, 10411–10421. [Google Scholar] [CrossRef]
- Gadd, G.E.; Moricca, S.; Kennedy, S.J.; Elcombe, M.M.; Evans, P.J.; Blackford, M.; Cassidy, D.; Howard, C.J.; Prasad, P.; Hanna, J.V.; et al. Novel rare gas interstitial fullerenes of C60 with Ar, Kr and Xe. J. Phys. Chem. Solids 1997, 58, 1823–1832. [Google Scholar] [CrossRef]
- Shul’ga, Y.M.; Martynenko, V.M.; Polyakov, S.N.; Chelovskaya, N.V.; Open’ko, V.V.; Skokan, E.V.; Blinova, L.N.; Dobrovol’skii, Y.A.; Morozov, Y.G.; Razumov, V.F.; et al. Fullerite intercalated with argon at room temperature: Synthesis and physicochemical properties. Russ. J. Inorg. Chem. 2009, 54, 341–345. [Google Scholar] [CrossRef]
- Stöhr, J. NEXAFS Spectroscopy; Springer Series in Surface Sciences; Springer: Berlin/Heidelberg, Germany, 1992; Volume 25, ISBN 978-3-642-08113-2. [Google Scholar]
- Hüfner, S. Photoelectron Spectroscopy; Advanced Texts in Physics; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 978-3-642-07520-9. [Google Scholar]
- Hofmann, S. Auger- and X-ray Photoelectron Spectroscopy in Materials Science; Springer Series in Surface Sciences; Springer: Berlin/Heidelberg, Germany, 2013; Volume 49, ISBN 978-3-642-27380-3. [Google Scholar]
- Sivkov, D.; Petrova, O.; Mingaleva, A.; Ob’edkov, A.; Kaverin, B.; Gusev, S.; Vilkov, I.; Isaenko, S.; Bogachuk, D.; Skandakov, R.; et al. The structure and chemical composition of the Cr and Fe pyrolytic coatings on the MWCNTs’ surface according to NEXAFS and XPS spectroscopy. Nanomaterials 2020, 10, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivkov, D.; Nekipelov, S.; Petrova, O.; Vinogradov, A.; Mingaleva, A.; Isaenko, S.; Makarov, P.; Ob’edkov, A.; Kaverin, B.; Gusev, S.; et al. Studies of buried layers and interfaces of tungsten carbide coatings on the MWCNT surface by XPS and NEXAFS spectroscopy. Appl. Sci. 2020, 10, 4736. [Google Scholar] [CrossRef]
- Gorovikov, S.A.; Molodtsov, S.L.; Follath, R. Optical design of the high-energy resolution beamline at a dipole magnet of BESSY II. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1998, 411, 506–512. [Google Scholar] [CrossRef]
- Fedoseenko, S.I.; Vyalikh, D.V.; Iossifov, I.E.; Follath, R.; Gorovikov, S.A.; Püttner, R.; Schmidt, J.-S.; Molodtsov, S.L.; Adamchuk, V.K.; Gudat, W.; et al. Commissioning results and performance of the high-resolution Russian–German beamline at BESSY II. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 505, 718–728. [Google Scholar] [CrossRef]
- Kummer, K.; Sivkov, V.N.; Vyalikh, D.V.; Maslyuk, V.V.; Blüher, A.; Nekipelov, S.V.; Bredow, T.; Mertig, I.; Mertig, M.; Molodtsov, S.L. Oscillator strength of the peptide bond π* resonances at all relevant X-ray absorption edges. Phys. Rev. B 2009, 80, 155433. [Google Scholar] [CrossRef]
- Kroto, H.W.; Allaf, A.W.; Balm, S.P. C60: Buckminsterfullerene. Chem. Rev. 1991, 91, 1213–1235. [Google Scholar] [CrossRef]
- Werner, H.; Schedel-Niedrig, T.; Wohlers, M.; Herein, D.; Herzog, B.; Schlögl, R.; Keil, M.; Bradshaw, A.M.; Kirschner, J. Reaction of molecular oxygen with C60: Spectroscopic studies. J. Chem. Soc. Faraday Trans. 1994, 90, 403–409. [Google Scholar] [CrossRef]
- Hou, J.G.; Zhao, A.D.; Huang, T.; Lu, S. C60-based materials. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scinetific Publishers: Stevenson Ranch, CA, USA, 2004; Volume 1, pp. 409–474. [Google Scholar]
- Rao, A.M.; Zhou, P.; Wang, K.-A.; Hager, G.T.; Holden, J.M.; Wang, Y.; Lee, W.-T.; Bi, X.-X.; Eklund, P.C.; Cornett, D.S.; et al. Photoinduced polymerization of solid C60 films. Science 1993, 259, 955–957. [Google Scholar] [CrossRef]
- Sundqvist, B. Mapping intermolecular bonding in C60. Sci. Rep. 2015, 4, 6171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiro, J.A.; Heinonen, M.H.; Laiho, T.; Batirev, I.G. Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon. J. Electron Spectrosc. Relat. Phenom. 2003, 128, 205–213. [Google Scholar] [CrossRef]
- Weaver, J.H.; Martins, J.L.; Komeda, T.; Chen, Y.; Ohno, T.R.; Kroll, G.H.; Troullier, N.; Haufler, R.E.; Smalley, R.E. Electronic structure of solid C60: Experiment and theory. Phys. Rev. Lett. 1991, 66, 1741–1744. [Google Scholar] [CrossRef]
- Weaver, J.H. Electronic structures of C60, C70 and the fullerides: Photoemission and inverse photoemission studies. J. Phys. Chem. Solids 1992, 53, 1433–1447. [Google Scholar] [CrossRef]
- Maxwell, A.J.; Brühwiler, P.A.; Arvanitis, D.; Hasselström, J.; Mårtensson, N. C 1s ionisation potential and energy referencing for solid C60 films on metal surfaces. Chem. Phys. Lett. 1996, 260, 71–77. [Google Scholar] [CrossRef]
- Jeong, H.-K.; Noh, H.-J.; Kim, J.-Y.; Jin, M.H.; Park, C.Y.; Lee, Y.H. X-ray absorption spectroscopy of graphite oxide. Europhys. Lett. 2008, 82, 67004. [Google Scholar] [CrossRef] [Green Version]
- Batson, P.E. Carbon 1s near-edge-absorption fine structure in graphite. Phys. Rev. B 1993, 48, 2608–2610. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.A.; Love, P.J.; Rehn, V. Polarization-dependent C(K) near-edge X-ray-absorption fine structure of graphite. Phys. Rev. B 1986, 33, 4034–4037. [Google Scholar] [CrossRef] [PubMed]
- Skytt, P.; Glans, P.; Mancini, D.C.; Guo, J.-H.; Wassdahl, N.; Nordgren, J.; Ma, Y. Angle-resolved soft-X-ray fluorescence and absorption study of graphite. Phys. Rev. B 1994, 50, 10457–10461. [Google Scholar] [CrossRef]
- Brühwiler, P.A.; Maxwell, A.J.; Puglia, C.; Nilsson, A.; Andersson, S.; Mårtensson, N. π* and σ* excitons in C 1s absorption of graphite. Phys. Rev. Lett. 1995, 74, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Mane, J.M.; Le Normand, F.; Medjo, R.E.; Cojocaru, C.S.; Ersen, O.; Senger, A.; Laffon, C.; Sendja, B.T.; Biouele, C.M.; Ben-Bolie, G.H.; et al. Alignment of vertically grown carbon nanostructures studied by X-ray absorption spectroscopy. Mater. Sci. Appl. 2014, 5, 966–983. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, M.; Luo, Y.; Triguero, L.; Pettersson, L.G.M.; Ågren, H. Core-hole effects in X-ray-absorption spectra of fullerenes. Phys. Rev. B 1999, 60, 7956–7960. [Google Scholar] [CrossRef]
- Wästberg, B.; Lunell, S.; Enkvist, C.; Brühwiler, P.A.; Maxwell, A.J.; Mårtensson, N. 1s X-ray-absorption spectroscopy of C60: The effects of screening and core-hole relaxation. Phys. Rev. B 1994, 50, 13031–13034. [Google Scholar] [CrossRef] [PubMed]
- Krummacher, S.; Biermann, M.; Neeb, M.; Liebsch, A.; Eberhardt, W. Close similarity of the electronic structure and electron correlation in gas-phase and solid C60. Phys. Rev. B 1993, 48, 8424–8429. [Google Scholar] [CrossRef] [PubMed]
- Haddon, R.C. Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules. Science 1993, 261, 1545–1550. [Google Scholar] [CrossRef]
- Haddon, R.C.; Brus, L.E.; Raghavachari, K. Electronic structure and bonding in icosahedral C60. Chem. Phys. Lett. 1986, 125, 459–464. [Google Scholar] [CrossRef]
- Fowler, P.W.; Woolrich, J. π-Systems in three dimensions. Chem. Phys. Lett. 1986, 127, 78–83. [Google Scholar] [CrossRef]
- Saito, S.; Oshiyama, A. Cohesive mechanism and energy bands of solid C60. Phys. Rev. Lett. 1991, 66, 2637–2640. [Google Scholar] [CrossRef]
- Chen, H.S.; Kortan, A.R.; Haddon, R.C.; Fleming, D.A. Thermodynamics of fullerene (C60) in pure oxygen, nitrogen and argon. J. Phys. Chem. 1992, 96, 1016–1018. [Google Scholar] [CrossRef]
- Wohlers, M.; Werner, H.; Belz, T.; Rühle, T.; Schlögl, R. C60: A host lattice for the intercalation of oxygen? Mikrochim. Acta 1997, 125, 401–406. [Google Scholar] [CrossRef]
- Ohno, T.R.; Chen, Y.; Harvey, S.E.; Kroll, G.H.; Weaver, J.H.; Haufler, R.E.; Smalley, R.E. C60 bonding and energy-level alignment on metal and semiconductor surfaces. Phys. Rev. B 1991, 44, 13747–13755. [Google Scholar] [CrossRef] [PubMed]
- Berezkin, V.I.; Viktorovskii, I.V.; Vul’, A.Y.; Golubev, L.V.; Petrova, V.N.; Khoroshko, L.O. Fullerene single crystals as adsorbents of organic compounds. Semiconductors 2003, 37, 775–783. [Google Scholar] [CrossRef]
- Erbahar, D.; Susi, T.; Rocquefelte, X.; Bittencourt, C.; Scardamaglia, M.; Blaha, P.; Guttmann, P.; Rotas, G.; Tagmatarchis, N.; Zhu, X.; et al. Spectromicroscopy of C60 and azafullerene C59N: Identifying surface adsorbed water. Sci. Rep. 2016, 6, 35605. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.; Ogasawara, H.; Salmeron, M.; Nilsson, A. In Situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J. Phys. Condens. Matter 2008, 20, 184025. [Google Scholar] [CrossRef] [Green Version]
- Henderson, M. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308. [Google Scholar] [CrossRef]
- Hodgson, A.; Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 2009, 64, 381–451. [Google Scholar] [CrossRef]
- Schiros, T.; Andersson, K.J.; Pettersson, L.G.M.; Nilsson, A.; Ogasawara, H. Chemical bonding of water to metal surfaces studied with core-level spectroscopies. J. Electron Spectrosc. Relat. Phenom. 2010, 177, 85–98. [Google Scholar] [CrossRef]
- Weissenrieder, J.; Mikkelsen, A.; Andersen, J.N.; Feibelman, P.J.; Held, G. Experimental evidence for a partially dissociated water bilayer on Ru{0001}. Phys. Rev. Lett. 2004, 93, 196102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Kimmel, G.A.; Matthiesen, J.; Baer, M.; Mundy, C.J.; Petrik, N.G.; Smith, R.S.; Dohnálek, Z.; Kay, B.D. No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 2009, 131, 12838–12844. [Google Scholar] [CrossRef]
- Sundar, C.S.; Bharathi, A.; Hariharan, Y.; Janaki, J.; Sankara Sastry, V.; Radhakrishnan, T.S. Thermal decomposition of C60. Solid State Commun. 1992, 84, 823–826. [Google Scholar] [CrossRef]
- Warren, B.E. X-ray diffraction in random layer lattices. Phys. Rev. 1941, 59, 693–698. [Google Scholar] [CrossRef]
- Franklin, R.E. The interpretation of diffuse X-ray diagrams of carbon. Acta Crystallogr. 1950, 3, 107–121. [Google Scholar] [CrossRef]
- Franklin, R.E. Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. Lond. A 1951, 209, 196–218. [Google Scholar] [CrossRef]
- Davydov, V.A.; Rakhmanina, A.V.; Agafonov, V.; Narymbetov, B.; Boudou, J.-P.; Szwarc, H. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures. Carbon 2004, 42, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Petrenko, I.; Summers, A.P.; Simon, P.; Żółtowska-Aksamitowska, S.; Motylenko, M.; Schimpf, C.; Rafaja, D.; Roth, F.; Kummer, K.; Brendler, E.; et al. Extreme biomimetics: Preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges. Sci. Adv. 2019, 5, eaax2805. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties; Wiley: New York, NY, USA, 1988; ISBN 978-0-471-84802-8. [Google Scholar]
- Porezag, D.; Pederson, M.R.; Frauenheim, T.; Köhler, T. Structure, stability, and vibrational properties of polymerized C60. Phys. Rev. B 1995, 52, 14963–14970. [Google Scholar] [CrossRef] [PubMed]
- Moret, R.; Launois, P.; Wågberg, T.; Sundqvist, B.; Agafonov, V.; Davydov, V.A.; Rakhmanina, A.V. Single-crystal structural study of the pressure-temperature-induced dimerization of C60. Eur. Phys. J. B Condens. Matter Complex Syst. 2003, 37, 25–37. [Google Scholar] [CrossRef]
- Moret, R.; Launois, P.; Wågberg, T.; Sundqvist, B. High-pressure synthesis, structural and raman studies of a two-dimensional polymer crystal of. Eur. Phys. J. B Condens. Matter Complex Syst. 2000, 15, 253–263. [Google Scholar] [CrossRef]
- Davydov, V.A.; Kashevarova, L.S.; Rakhmanina, A.V.; Senyavin, V.M.; Céolin, R.; Szwarc, H.; Allouchi, H.; Agafonov, V. Spectroscopic study of pressure-polymerized phases of C60. Phys. Rev. B 2000, 61, 11936–11945. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Sundqvist, B.; Edlund, U.; Jacobsson, P.; Johnels, D.; Jun, J.; Launois, P.; Moret, R.; Persson, P.-A.; Soldatov, A.; Wågberg, T. Structural and physical properties of pressure polymerized C60. Carbon 1998, 36, 657–660. [Google Scholar] [CrossRef]
- Han, S.; Yoon, M.; Berber, S.; Park, N.; Osawa, E.; Ihm, J.; Tománek, D. Microscopic mechanism of fullerene fusion. Phys. Rev. B 2004, 70, 113402. [Google Scholar] [CrossRef] [Green Version]
- Bagramov, R.; Serebryanaya, N.; Kulnitskiy, B.; Blank, V. C60 and C70 pressure-and-temperature transformations into fullerene-related forms. Fuller. Nanotub. Carbon Nanostruct. 2016, 24, 20–24. [Google Scholar] [CrossRef]
- Sing, M.; Soldatov, A.; Pichler, T.; Sundqvist, B.; Knupfer, M.; Golden, M.S.; Fink, J. Electronic structure studies of pressure-polymerized C60. Synth. Met. 1999, 103, 2454–2455. [Google Scholar] [CrossRef]
Peak Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Photon energy, eV | 284.50 | 285.84 | 286.43 | 288.30 | 290.91 | 291.85 | 292.93 | 295.50 | 297.50 | 300.73 | ~305.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivkov, D.V.; Petrova, O.V.; Nekipelov, S.V.; Vinogradov, A.S.; Skandakov, R.N.; Bakina, K.A.; Isaenko, S.I.; Ob’edkov, A.M.; Kaverin, B.S.; Sivkov, V.N. The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C60 Hot Isostatic Pressing. Appl. Sci. 2021, 11, 11646. https://doi.org/10.3390/app112411646
Sivkov DV, Petrova OV, Nekipelov SV, Vinogradov AS, Skandakov RN, Bakina KA, Isaenko SI, Ob’edkov AM, Kaverin BS, Sivkov VN. The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C60 Hot Isostatic Pressing. Applied Sciences. 2021; 11(24):11646. https://doi.org/10.3390/app112411646
Chicago/Turabian StyleSivkov, Danil V., Olga V. Petrova, Sergey V. Nekipelov, Alexander S. Vinogradov, Roman N. Skandakov, Ksenia A. Bakina, Sergey I. Isaenko, Anatoly M. Ob’edkov, Boris S. Kaverin, and Viktor N. Sivkov. 2021. "The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C60 Hot Isostatic Pressing" Applied Sciences 11, no. 24: 11646. https://doi.org/10.3390/app112411646
APA StyleSivkov, D. V., Petrova, O. V., Nekipelov, S. V., Vinogradov, A. S., Skandakov, R. N., Bakina, K. A., Isaenko, S. I., Ob’edkov, A. M., Kaverin, B. S., & Sivkov, V. N. (2021). The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C60 Hot Isostatic Pressing. Applied Sciences, 11(24), 11646. https://doi.org/10.3390/app112411646