Recommendations for Using QPN Formalism for Preparation of Incoming Request Stream Generator in Modeled System
Abstract
:1. Related Work
2. QPN Model
2.1. QPNs
- Set of places;
- Set of queueing places with scheduling strategy;
- Set of immediate or timed transitions (QPNs allow transitions to fire in different modes (transition colors));
- Initial marking (number of tokens);
- Incidence function (routing probability) is defined per color/mode basis;
- Arcs with firing weights as relative firing frequency of the mode;
- Token color function specifies the types of tokens that can reside in the place and allows transitions to fire in different modes.
2.2. Mathematical Model of QPN
- is a finite and non-empty set of places;
- is a finite and non-empty set of transitions;
- ;
- is a color function defined from into finite and non-empty sets (specify the types of tokens that can reside in the place and allow transitions to fire in different modes);
- are the backward and forward incidence functions defined in , such that (specify the interconnections between places and transitions; the subscript denotes multisets. denotes the set of all finite multisets of );
- is an initial marking defined on , such that (specify how many tokens are contained in each place).
- , where:
- -
- is a set of timed queueing places;
- -
- is a set of immediate queueing places;
- -
- ;
- -
- is an array with a description of places (if is a queueing place, denotes the description of a queue with all colors of into consideration, or if is the ordinary place () equals ).
- , where:
- -
- is a set of timed transitions;
- -
- is a set of immediate transitions;
- -
- , ;
- -
- is an array (entry , such that ) of:
- *
- rate of a negative exponential distribution specifying the firing delay due to color , if ;
- *
- firing weight specifying the relative firing frequency due to color , if .
2.3. Stream Generator
- In a simple SG, any user can use any resource in the stream generation process.
- In other cases, any stream can be generated based on a predetermined weight value.
- Simple model ;
- Varied models, e.g., ; ; ; ; ; , ; .
3. Testing in QPME Tool
3.1. Mathematical Model of SG in QPN
- Set of places .
- Set of transitions .
- Color function for colors . where:
- -
- and -user-classes;
- -
- and -resources;
- -
- , , , -stream.
- Incidence functions specify the interconnections between places and transitions .
- Initial marking specify how many tokens are contained in each place .
- , where:
- -
- ;
- -
- ;
- , where:
- -
- ;
- -
- , where the transition is immediate;
- -
- , for simple model and for exemplary varied models , , , , , , , where:
- *
- Color function ;
- *
- Colors ;
- *
- transition modes .
3.2. Simulation Model
- A c token is removed from place ;
- A token is deposited in place .
4. Stream Generator Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zatwarnicki, K.; Barton, S.; Mainka, D. Acquisition and Modeling of Website Parameters. In Advanced Information Networking and Applications-Proceedings of the 35th International Conference on Advanced Information Networking and Applications (AINA-2021), Toronto, ON, Canada, 12–14 May 2021; Volume 3; Barolli, L., Woungang, I., Enokido, T., Eds.; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2021; Volume 227, pp. 594–605. [Google Scholar] [CrossRef]
- Krajewska, A. Performance Modeling of Database Systems: A Survey. J. Telecommun. Inf. Technol. 2019, 8, 37–45. [Google Scholar] [CrossRef]
- Cherbal, S. Load balancing mechanism using Mobile agents. Informatica 2021, 45, 257–266. [Google Scholar] [CrossRef]
- Walid, B.; Kloul, L. Formal Models for Safety and Performance Analysis of a Data Center System. Reliab. Eng. Syst. Saf. 2019, 193, 106643. [Google Scholar] [CrossRef]
- Rak, T. Formal Techniques for Simulations of Distributed Web System Models. In Cognitive Informatics and Soft Computing; Mallick, P.K., Bhoi, A.K., Marques, G., Hugo, C., de Albuquerque, V., Eds.; Springer: Singapore, 2021; pp. 365–380. [Google Scholar] [CrossRef]
- Fiuk, M.; Czachórski, T. A Queueing Model and Performance Analysis of UPnP/HTTP Client Server Interactions in Networked Control Systems. In Computer Networks (CN 2019); Communications in Computer and Information Science; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 366–386. [Google Scholar] [CrossRef]
- Rzonca, D.; Rzasa, W.; Samolej, S. Consequences of the Form of Restrictions in Coloured Petri Net Models for Behaviour of Arrival Stream Generator Used in Performance Evaluation. In Computer Networks; Gaj, P., Sawicki, M., Suchacka, G., Kwiecień, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 300–310. [Google Scholar] [CrossRef]
- Kounev, S.; Lange, K.D.; von Kistowski, J. Systems Benchmarking: For Scientists and Engineers; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Rak, T. Modeling Web Client and System Behavior. Information 2020, 11, 337. [Google Scholar] [CrossRef]
- Rak, T. Performance Modeling Using Queueing Petri Nets. In Computer Networks (CN 2017); Gaj, P., Kwiecien, A., Sawicki, M., Eds.; Communications in Computer and Information Science; Springer International Publishing AG: Cham, Switzerland, 2017; Volume 718, pp. 321–335. [Google Scholar] [CrossRef]
- Zatwarnicki, K. Providing Predictable Quality of Service in a Cloud-Based Web System. Appl. Sci. 2021, 11, 2896. [Google Scholar] [CrossRef]
- Eismann, S.; Grohmann, J.; Walter, J.; von Kistowski, J.; Kounev, S. Integrating Statistical Response Time Models in Architectural Performance Models. In Proceedings of the 2019 IEEE International Conference on Software Architecture (ICSA), Hamburg, Germany, 25–29 March 2019; pp. 71–80. [Google Scholar] [CrossRef]
- Roshany, M.; Khorsandi, S. Performance analysis of the internet-protocol multimedia-subsystem’s control layer using a detailed queueing Petri-net model. Int. J. Commun. Syst. 2018, 32, e3885. [Google Scholar] [CrossRef]
- Curiel, M.; Pont, A. Workload Generators for Web-Based Systems: Characteristics, Current Status, and Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1526–1546. [Google Scholar] [CrossRef]
- Kolbusz, J.; Paszczynski, S.; Wilamowski, B. Network traffic model for industrial environment. In Proceedings of the 2005 3rd IEEE International Conference on Industrial Informatics (INDIN’05), Perth, Australia, 10–12 August 2005; pp. 406–411. [Google Scholar] [CrossRef]
- Tang, W.; Fu, Y.; Cherkasova, L.; Vahdat, A. Modeling and generating realistic streaming media server workloads. Comput. Netw. 2007, 51, 336–356. [Google Scholar] [CrossRef]
- Lukichev, M. Formation of equivalent simulation model of an real-time video stream generator used in packet-oriented communication networks, taking into account the structure of the H.264 compression algorithm. T-Comm 2019, 13, 43–52. [Google Scholar]
- Samolej, S.; Szmuc, T. HTCPNs–Based Tool for Web–Server Clusters Development. In Software Engineering Techniques; Huzar, Z., Koci, R., Meyer, B., Walter, B., Zendulka, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 131–142. [Google Scholar]
- Samolej, S.; Szmuc, T. Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling. e-Inform. Softw. Eng. J. 2009, 3, 139–153. [Google Scholar]
- Bause, F.; Buchholz, P.; Kemper, P. Hierarchically Combined Queueing Petri Nets; Springer: Berlin/Heidelberg, Germany, 2006; pp. 176–182. [Google Scholar] [CrossRef]
- Kounev, S.; Spinner, S.; Meier, P. Introduction to queueing petri nets: Modeling formalism, tool support and case studies. In Proceedings of the 3rd Joint WOSP/SIPEW International Conference on Performance Engineering (ICPE’12), Boston, MA, USA, 22–25 April 2012. [Google Scholar] [CrossRef]
- Kounev, S.; Spinner, S.; Meier, P. QPME 2.0—A Tool for Stochastic Modeling and Analysis Using Queueing Petri Nets; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6462, pp. 293–311. [Google Scholar] [CrossRef]
- Rak, T. Response Time Analysis of Distributed Web Systems Using QPNs. Math. Probl. Eng. 2015. [Google Scholar] [CrossRef] [Green Version]
Transition | Mode | Action |
---|---|---|
input{} ⟶ output{} | ||
input{} ⟶ output{} | ||
input{} ⟶ output{} | ||
input{} ⟶ output{} | ||
input{} ⟶ output{} | ||
input{} ⟶ output{} | ||
input{} ⟶ output{} | ||
input{} ⟶ output{} |
Place | Token | Queue | Description |
---|---|---|---|
Queueing place used to model concurrent clients. | |||
null | Ordinary place used to model resource. | ||
null | Ordinary place used to model the generated stream. | ||
Token Color | Place | Description |
---|---|---|
First user | ||
Second user | ||
First resource | ||
Second resource | ||
First user and first resource | ||
First user second resource | ||
Second user and first resource | ||
Second user and second resource |
Modes | Firing Weight w | Token Color | Mean Token Population for |
---|---|---|---|
1.0 | 25,172.11 | ||
1.0 | 24,858.411 | ||
1.0 | 24,733.689 | ||
1.0 | 25,095.054 |
Modes | Firing Weight w | Token Color | Mean Token Population for |
---|---|---|---|
1.0 | 9978.882 | ||
2.0 | 19,827.981 | ||
3.0 | 29,978.301 | ||
4.0 | 39,679.93 | ||
1.0 | 14,195.611 | ||
2.0 | 28,625.108 | ||
1.0 | 14,308.058 | ||
3.0 | 42,688.806 | ||
1.0 | 24,931.845 | ||
1.0 | 25,170.6 | ||
0.0 | 0.0 | ||
2.0 | 50,286.744 | ||
1.0 | 20,154.555 | ||
1.0 | 19,958.521 | ||
0.0 | 0.0 | ||
3.0 | 60,068.627 | ||
0.0 | 0.0 | ||
1.0 | 24,933.095 | ||
0.0 | 0.0 | ||
3.0 | 75,169.879 | ||
0.0 | 0.0 | ||
0.0 | 0.0 | ||
1.0 | 24,894.468 | ||
3.0 | 75,242.374 | ||
0.0 | 0.0 | ||
0.0 | 0.0 | ||
0.0 | 0.0 | ||
1.0 | 99,950.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rak, T.; Rzonca, D. Recommendations for Using QPN Formalism for Preparation of Incoming Request Stream Generator in Modeled System. Appl. Sci. 2021, 11, 11532. https://doi.org/10.3390/app112311532
Rak T, Rzonca D. Recommendations for Using QPN Formalism for Preparation of Incoming Request Stream Generator in Modeled System. Applied Sciences. 2021; 11(23):11532. https://doi.org/10.3390/app112311532
Chicago/Turabian StyleRak, Tomasz, and Dariusz Rzonca. 2021. "Recommendations for Using QPN Formalism for Preparation of Incoming Request Stream Generator in Modeled System" Applied Sciences 11, no. 23: 11532. https://doi.org/10.3390/app112311532
APA StyleRak, T., & Rzonca, D. (2021). Recommendations for Using QPN Formalism for Preparation of Incoming Request Stream Generator in Modeled System. Applied Sciences, 11(23), 11532. https://doi.org/10.3390/app112311532