Three-Dimensional Ultrasonic Imaging and Acoustic Emission Monitoring of Hydraulic Fractures in Tight Sandstone
Abstract
Featured Application
Abstract
1. Introduction
2. Methodology
2.1. Acoustic Emission Location
2.2. Sparse Tomography
3. Experiment
3.1. Specimen Details
3.2. Experimental Set-Up
3.3. AE Monitoring
3.4. UT Imaging
3.5. μCT Imaging
4. Results
4.1. Mechanical Response
4.2. Evolution of P-Wave Velocity
4.3. Hydraulic Fracture Morphology
4.4. Acoustic Emission
4.5. Fracture Process
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.Y.; He, J.Y.; Su, Y.W. Key mechanical problems and numerical methods of hydraulic fracture in shale. Sci. Technol. Rev. 2016, 34, 32–42. [Google Scholar]
- Liu, P.; Ju, Y.; Gao, F.; Ranjith, P.G.; Zhang, Q. CT identification and fractal characterization of 3-D propagation and distribution of hydrofracturing cracks in low-permeability heterogeneous rocks. J. Geophys. Res. Solid Earth 2018, 123, 2156–2173. [Google Scholar] [CrossRef]
- Xie, J.; Cheng, W.; Wang, R.; Jiang, G.; Sun, D.; Sun, J. Experiments and analysis on the influence of perforation mode on hydraulic fracture geometry in the shale formation. J. Pet. Sci. Eng. 2018, 168, 133–147. [Google Scholar] [CrossRef]
- Chong, Z.; Yao, Q.; Li, X. Experimental investigation of fracture propagation behavior induced by hydraulic fracturing in anisotropic shale cores. Energies 2019, 12, 976. [Google Scholar] [CrossRef]
- Smirnov, V.B.; Ponomarev, A.V.; Isaeva, A.V.; Bondarenko, N.B.; Patonin, A.V.; Kaznacheev, P.A.; Stroganova, S.M.; Potanina, M.G.; Chadha, R.K.; Arora, K. Fluid initiation of fracture in dry and water saturated rocks. Izv. Phys. Solid Earth 2020, 56, 808–826. [Google Scholar] [CrossRef]
- Falls, S.D.; Young, R.P.; Carlson, S.R.; Chow, T. Ultrasonic tomography and acoustic emission in hydraulically fractured Lac du Bonnet Grey granite. J. Geophys. Res. 1992, 97, 6867–6884. [Google Scholar] [CrossRef]
- Jansen, D.P.; Carlson, S.R.; Young, R.P.; Hutchins, D.A. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite. J. Geophys. Res. 1993, 98, 22231–22243. [Google Scholar] [CrossRef]
- Grosse, C.U.; Ohtsu, M. Acoustic Emission Testing; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Stoeckhert, F.; Molenda, M.; Brenne, S.; Alber, M. Fracture propagation in sandstone and slate—Laboratory experiments, acoustic emissions and fracture mechanics. J. Rock Mech. Geotech. Eng. 2015, 7, 237–249. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Q.; Hu, Q.; Liang, Y.; Xu, Y.; Liu, L.; Wu, X.; Li, X.; Wang, X.; Hu, L.; et al. Acoustic emission characteristics in hydraulic fracturing of stratified rocks: A laboratory study. Powder Technol. 2020, 371, 267–276. [Google Scholar] [CrossRef]
- Kiyoo, M.O.G.I. Study of Elastic Shocks Caused by the Fracture of Heterogeneous Materials and its Relations to Earthquake Phenomena; Bulletin of the Earthquake Research Institute, University of Tokyo: Tokyo, Japan, 1962; pp. 125–173. [Google Scholar]
- Main, I.G.; Meredith, P.G.; Sammonds, P.R. Temporal variations in seismic event rate and b-values from stress corrosion constitutive laws. Tectonophysics 1992, 211, 233–246. [Google Scholar] [CrossRef]
- Moura, A.; Lei, X.; Nishisawa, O. Self-similarity in rock cracking and related complex critical exponents. J. Mech. Phys. Solids 2006, 54, 2544–2553. [Google Scholar] [CrossRef]
- Meredith, P.; Main, I.G.; Jones, C. Temporal variations in seismicity during quasi-static and dynamic rock failure. Tectonophysics 1990, 175, 249–268. [Google Scholar] [CrossRef]
- Lei, X. Typical phases of pre-failure damage in granitic rocks under differential compression. Geol. Soc. London Spéc. Publ. 2006, 261, 11–29. [Google Scholar] [CrossRef]
- Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.; Ponomarev, A.; Sidorin, A. Quasi-static fault growth and shear fracture energy in granite. Nature 1991, 350, 39–42. [Google Scholar] [CrossRef]
- Aker, E.; Kühn, D.; Vavrycuk, V.; Soldal, M.; Oye, V. Experimental investigation of acoustic emissions and their moment tensors in rock during failure. Int. J. Rock Mech. Min. Sci. 2014, 70, 286–295. [Google Scholar] [CrossRef]
- Chang, S.-H.; Lee, C.-I. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. Int. J. Rock Mech. Min. Sci. 2004, 41, 1069–1086. [Google Scholar] [CrossRef]
- Lei, X.; Nishizawa, O.; Kusunose, K.; Satoh, T. Fractal Structure of the Hypocenter Distributions and Focal Mechanism Solutions of Acoustic Emission in Two Granites of Different Grain Sizes. J. Phys. Earth 1992, 40, 617–634. [Google Scholar] [CrossRef]
- Ohtsu, M. Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test. J. Geophys. Res. Solid Earth 1991, 96, 6211–6221. [Google Scholar] [CrossRef]
- Zhai, H.; Chang, X.; Wang, Y.; Lei, X.; Xue, Z. Analysis of acoustic emission events induced during stress unloading of a hydraulic fractured Longmaxi shale sample. J. Pet. Sci. Eng. 2020, 189, 106990. [Google Scholar] [CrossRef]
- Lockner, D.; Byerlee, J.D. Hydrofracture in Weber Sandstone at high confining pressure and differential stress. J. Geophys. Res. Space Phys. 1977, 82, 2018–2026. [Google Scholar] [CrossRef]
- Zoback, M.D.; Rummel, F.; Jung, R.; Raleigh, C.B. Laboratory hydraulic fracturing experiments in intact and pre-fractured rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1977, 14, 49–58. [Google Scholar]
- Liu, J.Z.; Gao, L.S.; Zhang, X. Observations on the acoustic emission in an in-house hydrofracturing simulation experiment. Acta Pet. Sin. 1990, 11, 73–78. [Google Scholar]
- Chitrala, Y.; Sondergeld, C.H.; Rai, C.R. Acoustic emission studies of hydraulic fracture evolution using different fluid viscosities. In Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium held in Chicago, Chicago, IL, USA, 24–27 June 2012. [Google Scholar]
- Chen, L.-H.; Chen, W.-C.; Chen, Y.-C.; Benyamin, L.; Li, A.-J. Investigation of Hydraulic Fracture Propagation Using a Post-Peak Control System Coupled with Acoustic Emission. Rock Mech. Rock Eng. 2014, 48, 1233–1248. [Google Scholar] [CrossRef]
- Stanchits, S.; Surdi, A.; Gathogo, P.; Edelman, E.; Suarez-Rivera, R. Onset of Hydraulic Fracture Initiation Monitored by Acoustic Emission and Volumetric Deformation Measurements. Rock Mech. Rock Eng. 2014, 47, 1521–1532. [Google Scholar] [CrossRef]
- Stanchits, S.; Burghardt, J.; Surdi, A. Hydraulic Fracturing of Heterogeneous Rock Monitored by Acoustic Emission. Rock Mech. Rock Eng. 2015, 48, 2513–2527. [Google Scholar] [CrossRef]
- Hampton, J.; Matzar, L.; Gutierrez, M. AE investigation of multi-wellbore hydraulic fractures at the laboratory scale. In Proceedings of the 50th US Rock Mechanics/Geomechanics Symposium, Houston, TX, USA, 26–29 June 2016. [Google Scholar]
- King, M.S. Wave velocities in overburden in rocks as a function of changes pressure and pore fluid saturants. Geophysics 1966, 31, 50–73. [Google Scholar] [CrossRef]
- Toksöz, M.N.; Johnston, D.H.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics 1979, 44, 681–690. [Google Scholar] [CrossRef]
- Johnston, D.H.; Toksöz, M.N.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. Geophysics 1979, 44, 691–711. [Google Scholar] [CrossRef]
- Shi, G.; Shen, W.L.; Yang, D.Q. The relationship of wave velocities with saturation and fluid distribution in pore space. Chin. J. Geophys. 2003, 46, 138–142. [Google Scholar] [CrossRef]
- Deng, J.X.; Wang, S.X.; Yu, J. The effects of pore fluid distribution to the experimental velocity of partially saturated reservoir sandstones. Geophys. Prospect. Pet. 2005, 44, 495–500. [Google Scholar]
- Monsen, K.; Johnstad, S. Improved understanding of velocity-saturation relationships using 4D computer-tomography acoustic measurements. Geophys. Prospect. 2005, 53, 173–181. [Google Scholar] [CrossRef]
- Yanagidani, T.; Terada, M. Water infiltration in rock observed by CT using P and S waves. Doboku Gakkai Ronbunshu 1987, 1987, 83–89. [Google Scholar] [CrossRef][Green Version]
- Scott, T.E.; Ma, Q.; Roegiers, J.C.; Reches, Z. Dynamic Stress Mapping Utilizing Ultrasonic Tomography. In Proceedings of the 1st North American Rock Mechanics Symposium, Austin, TX, USA, 1–3 June 1994. [Google Scholar]
- Martins, J.L.; A Soares, J.; Da Silva, J.C. Ultrasonic travel-time tomography in core plugs. J. Geophys. Eng. 2007, 4, 117–127. [Google Scholar] [CrossRef]
- Mitra, R.; Westman, E.C. Investigation of the stress imaging in rock samples using numerical modeling and laboratory tomography. Int. J. Geotech. Eng. 2009, 3, 517–525. [Google Scholar] [CrossRef]
- Brantut, N. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction. Geophys. J. Int. 2018, 213, 2177–2192. [Google Scholar] [CrossRef]
- He, T.M.; Zhao, Q.; Ha, J.; Xia, K.; Grasselli, G. Understanding progressive rock failure and associated seismicity using ultrasonic tomography and numerical simulation. Tunn. Undergr. Space Technol. 2018, 81, 26–34. [Google Scholar] [CrossRef]
- Masuda, K.; Nishizawa, O.; Kusunose, K.; Satoh, T.; Takahashi, M.; Kranz, R.L. Positive feedback fracture process induced by nonuniform high-pressure water flow in dilatant granite. J. Geophys. Res. Space Phys. 1990, 95, 21583–21592. [Google Scholar] [CrossRef]
- Lei, X.; Funatsu, T.; Ma, S.; Liu, L. A laboratory acoustic emission experiment and numerical simulation of rock fracture driven by a high-pressure fluid source. J. Rock Mech. Geotech. Eng. 2016, 8, 27–34. [Google Scholar] [CrossRef]
- Zhu, W.; Chang, X.; Zhai, H.; Wang, S. Three-dimensional ultrasonic imaging and acoustic emission monitoring of hydraulic fracture in tight sandstones. In Proceedings of the 82nd EAGE Conference & Exhibition 2020, Amsterdam, The Netherlands, 18–21 October 2020. [Google Scholar]
- Krilov, Z.; Goricnik, B. A study of hydraulic fracture orientation by X-ray computed tomography (CT). In Proceedings of the SPE European Petroleum Conference, Milan, Italy, 22–24 October 1996; pp. 69–74. [Google Scholar]
- Hampton, J.C.; Hu, D.; Matzar, L.; Gutierrez, M. Cumulative volumetric deformation of a hydraulic fracture using acoustic emission and micro-CT imaging. In Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, MN, USA, 1–4 June 2014. [Google Scholar]
- Liu, N.-Z.; Zou, Y.-S.; Ma, X.-F.; Li, N.; Wu, S. Study of hydraulic fracture growth behavior in heterogeneous tight sandstone formations using CT scanning and acoustic emission monitoring. Pet. Sci. 2018, 16, 396–408. [Google Scholar] [CrossRef]
- Jiang, C.; Niu, B.; Yin, G.; Zhang, D.; Yu, T.; Wang, P. CT-based 3D reconstruction of the geometry and propagation of hydraulic fracturing in shale. J. Pet. Sci. Eng. 2019, 179, 899–911. [Google Scholar] [CrossRef]
- Zhu, W. Research on the active and passive ultrasonic imaging. In Institute of Geology and Geophysics, Chinese Academy of Sciences; University of Chinese Academy of Sciences: Beijing, China, 2019. [Google Scholar]
- Xue, Q.; Wang, Y.; Zhai, H.; Chang, X. Automatic Identification of Fractures Using a Density-Based Clustering Algorithm with Time-Spatial Constraints. Energies 2018, 11, 563. [Google Scholar] [CrossRef]
- Li, X.; Lei, X.; Li, Q. Fault nucleation of tight sandstone by investigation of mechanical, acoustic, and hydraulic responses. Eng. Geol. 2021, 292, 106254. [Google Scholar] [CrossRef]
- Bobrova, M.; Stanchits, S.; Shevtsova, A.; Filev, E.; Stukachev, V.; Shayahmetov, T. Laboratory Investigation of Hydraulic Fracture Behavior of Unconventional Reservoir Rocks. Geosciences 2021, 11, 292. [Google Scholar] [CrossRef]
- Stanchits, S.; Mayr, S.; Shapiro, S.; Dresen, G. Fracturing of porous rock induced by fluid injection. Tectonophysics 2011, 503, 129–145. [Google Scholar] [CrossRef]
- Vogel, C.R. Computational Methods for Inverse Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002. [Google Scholar]
- Hansen, P.C. Discrete Inverse Problems Insight and Algorithms; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010. [Google Scholar]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; V. H. Winston & Sons: Washington, DC, USA; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Zhu, W.; Chang, X.; Wang, Y.; Zhai, H.; Yao, Z. Reconstruction of hydraulic fractures using passive ultrasonic travel-time tomography. Energies 2018, 11, 1321. [Google Scholar] [CrossRef]
- Kurz, J.H.; Grosse, C.U.; Reinhardt, H.W. Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics 2005, 43, 538–546. [Google Scholar] [CrossRef]
- Lei, X. Evolution of b-Value and Fractal Dimension of Acoustic Emission Events During Shear Rupture of an Immature Fault in Granite. Appl. Sci. 2019, 9, 2498. [Google Scholar] [CrossRef]
- Hassouna, M.S.; Farag, A.A. MultiStencils Fast Marching Methods: A Highly Accurate Solution to the Eikonal Equation on Cartesian Domains. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1563–1574. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting, 3rd ed.; Cambridge University Press: New York, NY, USA, 2019. [Google Scholar]
- Lei, X.; Tamagawa, T.; Tezuka, K.; Takahashi, M. Role of drainage conditions in deformation and fracture of porous rocks under triaxial compression in the laboratory. Geophys. Res. Lett. 2011, 38, L24310. [Google Scholar] [CrossRef]
- Li, X.; Lei, X.; Li, Q. Injection-induced fracturing process in a tight sandstone under different saturation conditions. Environ. Earth Sci. 2016, 75, 1466. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Wang, S.; Chang, X.; Zhai, H.; Wu, H. Three-Dimensional Ultrasonic Imaging and Acoustic Emission Monitoring of Hydraulic Fractures in Tight Sandstone. Appl. Sci. 2021, 11, 9352. https://doi.org/10.3390/app11199352
Zhu W, Wang S, Chang X, Zhai H, Wu H. Three-Dimensional Ultrasonic Imaging and Acoustic Emission Monitoring of Hydraulic Fractures in Tight Sandstone. Applied Sciences. 2021; 11(19):9352. https://doi.org/10.3390/app11199352
Chicago/Turabian StyleZhu, Wei, Shangxu Wang, Xu Chang, Hongyu Zhai, and Hezhen Wu. 2021. "Three-Dimensional Ultrasonic Imaging and Acoustic Emission Monitoring of Hydraulic Fractures in Tight Sandstone" Applied Sciences 11, no. 19: 9352. https://doi.org/10.3390/app11199352
APA StyleZhu, W., Wang, S., Chang, X., Zhai, H., & Wu, H. (2021). Three-Dimensional Ultrasonic Imaging and Acoustic Emission Monitoring of Hydraulic Fractures in Tight Sandstone. Applied Sciences, 11(19), 9352. https://doi.org/10.3390/app11199352