Photo Identification of Individual Salmo trutta Based on Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification Method
2.2. Dataset
2.3. Implementation Details
2.4. Training Procedure
2.5. Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Radinger, J.; Britton, J.R.; Carlson, S.M.; Magurran, A.E.; Alcaraz-Hernández, J.D.; Almodóvar, A.; Benejam, L.; Fernández-Delgado, C.; Nicola, G.G.; Oliva-Paterna, F.J.; et al. Effective monitoring of freshwater fish. Fish Fish. 2019, 20, 729–747. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.C.; Baras, E. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish. 2000, 1, 283–316. [Google Scholar] [CrossRef]
- Ferrari, R.; McKinnon, D.; He, H.; Smith, R.N.; Corke, P.; González-Rivero, M.; Mumby, P.J.; Upcroft, B. Quantifying multiscale habitat structural complexity: A cost-effective framework for underwater 3D modelling. Remote Sens. 2016, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.J.; Broadley, A.; Adame, M.F.; Branch, T.A.; Turschwell, M.P.; Connolly, R.M. The assessment of fishery status depends on fish habitats. Fish Fish. 2019, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.D.; Kehler, D.G.; Meade, K.R. Retrospective Sampling Strategies Using Video Recordings to Estimate Fish Passage at Fishways. N. Am. J. Fish. Manag. 2007, 27, 992–1003. [Google Scholar] [CrossRef]
- Snyder, D.E. Invited overview: Conclusions from a review of electrofishing and its harmful effects on fish. Rev. Fish Biol. Fish. 2003, 13, 445–453. [Google Scholar] [CrossRef]
- Stewart, C.T.; Lutnesky, M.M. Retardation of reproduction in the Red Shiner due to electroshock. N. Am. J. Fish. Manag. 2014, 34, 463–470. [Google Scholar] [CrossRef]
- Hatch, D.R.; Schwartzberg, M. Wenatchee River salmon escapement estimates using video tape technology in 1990. CRITFC Tech. Rep. 1991, 91, 29. [Google Scholar]
- Martin, B.M.; Irwin, E.R. A Digital Underwater Video Camera System for Aquatic Research in Regulated Rivers. N. Am. J. Fish. Manag. 2010, 30, 1365–1369. [Google Scholar] [CrossRef]
- Hawkins, P.; Hortle, K.; Phommanivong, S.; Singsua, Y. Underwater video monitoring of fish passage in the Mekong River at Sadam Channel, Khone Falls, Laos. River Res. Appl. 2018, 34, 232–243. [Google Scholar] [CrossRef]
- Hetrick, N.J.; Simms, K.M.; Plumb, M.P.; Larson, J.P. Feasibility of Using Video Technology to Estimate Salmon Escapement in the Ongivinuk River, a Clear-Water Tributary of the Togiak River; US Fish and Wildlife Service, King Salmon Fish and Wildlife Field Office: King Salmon, AK, USA, 2004.
- Aparicio, E.; Pintor, C.; Durán, C.; Carmona Catot, G. Fish passage assessment at the most downstream barrier of the Ebro River (NE Iberian Peninsula). Limnetica 2012, 31, 37–46. [Google Scholar]
- Esteve, M.; Gilroy, D.; McLennan, D.A. Spawning behaviour of taimen (Hucho taimen) from the Uur River, Northern Mongolia. Environ. Biol. Fishes 2009, 84, 185–189. [Google Scholar] [CrossRef]
- Arnekleiv, J.V.; Kraabøl, M.; Museth, J. Efforts to aid downstream migrating brown trout (Salmo trutta L.) kelts and smolts passing a hydroelectric dam and a spillway. In Developments in Fish Telemetry; Springer: Berlin/Heidelberg, Germany, 2007; pp. 5–15. [Google Scholar]
- Lee, D.J.; Archibald, J.K.; Schoenberger, R.B.; Dennis, A.W.; Shiozawa, D.K. Contour matching for fish species recognition and migration monitoring. In Applications of Computational Intelligence in Biology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 183–207. [Google Scholar]
- Finstad, B.; Ulvan, E.M.; Jonsson, B.; Ugedal, O.; Thorstad, E.B.; Hvidsten, N.A.; Hindar, K.; Karlsson, S.; Uglem, I.; Økland, F. Forslag til overvåkingssystem for sjøørret. NINA Rapp. 2011, 689, 1–53. [Google Scholar]
- Eder, K.; Thompson, D.; Caudill, C.; Loge, F. Video Monitoring of Adult Fish Ladder Modifications to Improve Pacific Lamprey Passage at the McNary Dam Oregon Shore Fishway; Technical Report; Army Coprs of Engineers: Walla Walla District, WA, USA, 2011. [Google Scholar]
- Daum, D.W. Monitoring fish wheel catch using event-triggered video technology. N. Am. J. Fish. Manag. 2005, 25, 322–328. [Google Scholar] [CrossRef]
- Svenning, M.A.; Lamberg, A.; Dempson, B.; Strand, R.; Hanssen, Ø.K.; Fauchald, P. Incidence and timing of wild and escaped farmed Atlantic salmon (Salmo salar) in Norwegian rivers inferred from video surveillance monitoring. Ecol. Freshw. Fish 2017, 26, 360–370. [Google Scholar] [CrossRef]
- Orell, P. Video Monitoring of the River Neidenelva Salmon and Sea-Trout Migrations in 2006–2011; Working Papers of the Finnish Game and Fisheries Institute 8/2012; Finnish Game and Fisheries Research Institute: Helsinki, Finland, 2012. [Google Scholar]
- Lamberg, A.; Strand, R. Overvåking av anadrome laksefisk i Urvoldvassdraget i Bindal i 2008: Miljøeffekter av lakseoppdrettsanlegg i Bindalsfjorden. In Vilt og Fiskeinfo Rapport; Technical Report, Number 6; Vilt og Fiskeinfo AS: Ranheim, Norway, 2009. [Google Scholar]
- Cadieux, S.; Michaud, F.; Lalonde, F. Intelligent system for automated fish sorting and counting. In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113), Takamatsu, Japan, 31 October–5 November 2000; Volume 2, pp. 1279–1284. [Google Scholar]
- Myrum, E.; Nørstebø, S.A.; George, S.; Pedersen, M.; Museth, J. An Automatic Image-Based System for Detecting Wild and Stocked Fish. In Proceedings of the Norsk Informatikkonferanse, Narvik, Norway, 25–27 November 2019. [Google Scholar]
- Pengying, T.; Pedersen, M.; Hardeberg, J.Y.; Museth, J. Underwater Fish Classification of Trout and Grayling. In Proceedings of the 15th International Conference on Signal Image Technology & Internet Based Systems, Naples, Italy, 26–29 November 2019; pp. 268–273. [Google Scholar]
- Bravata, N.; Kelly, D.; Eickholt, J.; Bryan, J.; Miehls, S.; Zielinski, D. Applications of deep convolutional neural networks to predict length, circumference, and weight from mostly dewatered images of fish. Ecol. Evol. 2020, 10, 9313–9325. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Liu, J.; Wang, H.; Zhu, J.; Li, D.; Zhao, R. Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 2021, 540, 736724. [Google Scholar] [CrossRef]
- Gamble, L.; Ravela, S.; McGarigal, K. Multi-scale features for identifying individuals in large biological databases: An application of pattern recognition technology to the marbled salamander Ambystoma opacum. J. Appl. Ecol. 2008, 45, 170–180. [Google Scholar] [CrossRef]
- Koehn, J.D. Why use radio tags to study freshwater fish. In Fish Movement and Migration; Hancock, D.A., Smith, D., Koehn, J.D., Eds.; Arthur Rylah Institute for Environmental Research: Heidelberg, Australia, 2000; pp. 24–32. [Google Scholar]
- Merz, J.E. Seasonal feeding habits, growth, and movement of steelhead trout in the lower Mokelumne River, California. Calif. Fish Game 2002, 88, 95–111. [Google Scholar]
- Dietrich, J.P.; Cunjak, R.A. Evaluation of the impacts of Carlin tags, fin clips, and Panjet tattoos on juvenile Atlantic salmon. N. Am. J. Fish. Manag. 2006, 26, 163–169. [Google Scholar] [CrossRef]
- Powell, R.A.; Proulx, G. Trapping and marking terrestrial mammals for research: Integrating ethics, performance criteria, techniques, and common sense. ILAR J. 2003, 44, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Persat, H. Photographic identification of individual grayling, Thymallus thymallus, based on the disposition of black dots and scales. Freshw. Biol. 1982, 12, 97–101. [Google Scholar] [CrossRef]
- Cooke, S.J.; Nguyen, V.M.; Murchie, K.J.; Thiem, J.D.; Donaldson, M.R.; Hinch, S.G.; Brown, R.S.; Fisk, A. To tag or not to tag: Animal welfare, conservation, and stakeholder considerations in fish tracking studies that use electronic tags. J. Int. Wildl. Law Policy 2013, 16, 352–374. [Google Scholar] [CrossRef]
- Brown, R.S.; Cooke, S.J.; Wagner, G.N.; Eppard, M.B. Methods for Surgical Implantation of Acoustic Transmitters in Juvenile Salmonids; Prepared for the US Army Corps of Engineers, Portland District. Contract DE-AC25e76RL01830; National Technical Information Service, US Department of Commerce: Springfield, VA, USA, 2010.
- Ravoor, P.C.; Sudarshan, T. Deep Learning Methods for Multi-Species Animal Re-identification and Tracking—A Survey. Comput. Sci. Rev. 2020, 38, 100289. [Google Scholar] [CrossRef]
- Okafor, E.; Pawara, P.; Karaaba, F.; Surinta, O.; Codreanu, V.; Schomaker, L.; Wiering, M. Comparative study between deep learning and bag of visual words for wild-animal recognition. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar]
- Nguyen, H.; Maclagan, S.J.; Nguyen, T.D.; Nguyen, T.; Flemons, P.; Andrews, K.; Ritchie, E.G.; Phung, D. Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring. In Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 19–21 October 2017; pp. 40–49. [Google Scholar]
- Zhou, C.; Xu, D.; Chen, L.; Zhang, S.; Sun, C.; Yang, X.; Wang, Y. Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision. Aquaculture 2019, 507, 457–465. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Kornblith, S.; Shlens, J.; Le, Q.V. Do better imagenet models transfer better? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 2661–2671. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790. [Google Scholar]
- Garcia, N.; Vogiatzis, G. Learning non-metric visual similarity for image retrieval. Image Vis. Comput. 2019, 82, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Computer Vision Annotation Tool. Available online: https://github.com/opencv/cvat (accessed on 1 May 2020).
- Zhao, L.; Pedersen, M.; Hardeberg, J.Y.; Dervo, B. Image-based Recognition of Individual Trouts in the Wild. In Proceedings of the 8th European Workshop on Visual Information Processing, Roma, Italy, 28–31 October 2019; pp. 82–87. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Zhang, T.; Zhang, X.; Ke, X.; Liu, C.; Xu, X.; Zhan, X.; Wang, C.; Ahmad, I.; Zhou, Y.; Pan, D.; et al. HOG-ShipCLSNet: A Novel Deep Learning Network with HOG Feature Fusion for SAR Ship Classification. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Ahonen, T.; Hadid, A.; Pietikäinen, M. Face recognition with local binary patterns. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2004; pp. 469–481. [Google Scholar]
- Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef] [PubMed]
- Lantsova, E.; Voitiuk, T.; Zudilova, T.; Kaarna, A. Using low-quality video sequences for fish detection and tracking. In Proceedings of the 2016 SAI Computing Conference (SAI), London, UK, 13–15 July 2016; pp. 426–433. [Google Scholar]
- He, P. Swimming behaviour of winter flounder (Pleuronectes americanus) on natural fishing grounds as observed by an underwater video camera. Fish. Res. 2003, 60, 507–514. [Google Scholar] [CrossRef]
- Pratt, T.C.; Smokorowski, K.E.; Muirhead, J.R. Development and experimental assessment of an underwater video technique for assessing fish-habitat relationships. Arch. Für Hydrobiol. 2005, 164, 547–571. [Google Scholar] [CrossRef]
- Bruslund Haurum, J.; Karpova, A.; Pedersen, M.; Hein Bengtson, S.; Moeslund, T.B. Re-Identification of Zebrafish using Metric Learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, Snowmass Village, CO, USA, 1–5 March 2020. [Google Scholar]
- Freytag, A.; Rodner, E.; Simon, M.; Loos, A.; Kühl, H.S.; Denzler, J. Chimpanzee faces in the wild: Log-euclidean CNNs for predicting identities and attributes of primates. In German Conference on Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2016; pp. 51–63. [Google Scholar]
- Deb, D.; Wiper, S.; Gong, S.; Shi, Y.; Tymoszek, C.; Fletcher, A.; Jain, A.K. Face recognition: Primates in the wild. In Proceedings of the 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), Redondo Beach, CA, USA, 22–25 October 2018; pp. 1–10. [Google Scholar]
- Foster, R.J.; Harmsen, B.J. A critique of density estimation from camera-trap data. J. Wildl. Manag. 2012, 76, 224–236. [Google Scholar] [CrossRef]
- Kelly, M.J.; Noss, A.J.; Di Bitetti, M.S.; Maffei, L.; Arispe, R.L.; Paviolo, A.; De Angelo, C.D.; Di Blanco, Y.E. Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize. J. Mammal. 2008, 89, 408–418. [Google Scholar] [CrossRef]
Time + | Method | Accuracy | Precision | Recall | F1-Score | Specificity | LR+ |
---|---|---|---|---|---|---|---|
Proposed | 0.974 | 0.980 | 0.967 | 0.974 | 0.981 | 50.894 | |
HOG+SVM [47] | 0.807 | 0.771 | 0.877 | 0.821 | 0.735 | 3.309 | |
LBP+SVM [48] | 0.804 | 0.904 | 0.684 | 0.779 | 0.926 | 9.24 | |
Proposed | 0.967 | 0.978 | 0.954 | 0.966 | 0.980 | 47.7 | |
HOG+SVM [47] | 0.779 | 0.715 | 0.856 | 0.779 | 0.715 | 3.0 | |
LBP+SVM [48] | 0.788 | 0.858 | 0.640 | 0.734 | 0.912 | 7.27 | |
Proposed | 0.951 | 0.973 | 0.924 | 0.948 | 0.976 | 38.5 | |
HOG+SVM [47] | 0.761 | 0.715 | 0.813 | 0.761 | 0.716 | 2.86 | |
LBP+SVM [48] | 0.754 | 0.841 | 0.583 | 0.688 | 0.904 | 6.07 | |
Proposed | 0.917 | 0.966 | 0.848 | 0.903 | 0.975 | 33.92 | |
HOG+SVM [47] | 0.752 | 0.691 | 0.778 | 0.732 | 0.731 | 2.89 | |
LBP+SVM [48] | 0.780 | 0.869 | 0.584 | 0.699 | 0.932 | 8.59 | |
Proposed | 0.903 | 0.961 | 0.813 | 0.881 | 0.974 | 31.27 | |
HOG+SVM [47] | 0.744 | 0.680 | 0.766 | 0.720 | 0.727 | 2.80 | |
LBP+SVM [48] | 0.775 | 0.847 | 0.582 | 0.690 | 0.920 | 7.27 | |
Proposed | 0.874 | 0.946 | 0.743 | 0.832 | 0.969 | 23.96 | |
HOG+SVM [47] | 0.725 | 0.658 | 0.726 | 0.691 | 0.725 | 2.64 | |
LBP+SVM [48] | 0.757 | 0.833 | 0.529 | 0.647 | 0.923 | 6.87 |
Method | Accuracy | Precision | Recall | F1-Score | Specificity | LR+ |
---|---|---|---|---|---|---|
Proposed | 0.718 | 0.766 | 0.483 | 0.592 | 0.891 | 1.86 |
Fish ID | Images | Predicted | ||
---|---|---|---|---|
Brown Trout 1 | Brown Trout 2 | Image 1 | Image 2 | |
Brown Trout 14 | Brown Trout 23 | | | Not Identical |
Brown Trout 39 | Brown Trout 39 | | | Identical |
Brown Trout 24 | Brown Trout 13 | | | Not Identical |
Brown Trout 5 | Brown Trout 5 | | | Identical |
Brown Trout 10 | Brown Trout 10 | | | Identical |
Brown Trout 17 | Brown Trout 17 | | | Identical |
Brown Trout 14 | Brown Trout 23 | | | Not Identical |
Brown Trout 38 | Brown Trout 36 | | | Not Identical |
Fish ID | Images | Predicted | ||
---|---|---|---|---|
Fish 1 | Fish 2 | Image 1 | Image 2 | |
Fish8 | Fish84 | | | Not Identical |
Fish479 | Fish236 | | | Not Identical |
Fish358 | Fish358 | | | Identical |
Fish238 | Fish238 | | | Identical |
Fish144 | Fish238 | | | Not Identical |
Fish479 | Fish479 | | | Identical |
Fish449 | Fish65 | | | Not Identical |
Fish305 | Fish84 | | | Not Identical |
Fish ID | Images | Predicted | ||
---|---|---|---|---|
Fish 1 | Fish 2 | Image 1 | Image 2 | |
Fish298 | Fish298 | | | Not Identical |
Fish248 | Fish59 | | | Identical |
Fish293 | Fish293 | | | Not Identical |
Fish183 | Fish541 | | | Identical |
Fish71 | Fish71 | | | Not Identical |
Fish299 | Fish299 | | | Not Identical |
Fish438 | Fish539 | | | Identical |
Fish153 | Fish448 | | | Identical |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedersen, M.; Mohammed, A. Photo Identification of Individual Salmo trutta Based on Deep Learning. Appl. Sci. 2021, 11, 9039. https://doi.org/10.3390/app11199039
Pedersen M, Mohammed A. Photo Identification of Individual Salmo trutta Based on Deep Learning. Applied Sciences. 2021; 11(19):9039. https://doi.org/10.3390/app11199039
Chicago/Turabian StylePedersen, Marius, and Ahmed Mohammed. 2021. "Photo Identification of Individual Salmo trutta Based on Deep Learning" Applied Sciences 11, no. 19: 9039. https://doi.org/10.3390/app11199039
APA StylePedersen, M., & Mohammed, A. (2021). Photo Identification of Individual Salmo trutta Based on Deep Learning. Applied Sciences, 11(19), 9039. https://doi.org/10.3390/app11199039