Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Tidal Accelerations
2.2. Data
2.3. Simulation of Orbital Motion
3. Results
3.1. The Solar System
3.2. Extrasolar Planetary System TRAPPIST-1
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
TNO | Radius | Mass | Orbital Elements | Moons |
---|---|---|---|---|
(19521) Chaos (1998 WH24) | [58] | |||
(38628) Huya (2000 EB173) | [58] | |||
(47171) Lempo (1999 TC36) | [58] | [59] | ||
(50000) Quaoar (2002 LM60) | [58,60] | [60,61] | * | |
(58534) Logos (1997 CQ29) | [62] | [62] | * | |
(65489) Ceto (2003 FX128) | [58] | [63] | * | |
(66652) Borasisi (1999 RZ253) | [58] | [64] | * | |
(88611) Teharonhiawako (2001 QT297) | [58] | [64] | * | |
(90377) Sedna (2003 VB12) | [58] | |||
(90482) Orcus (2004 DW) | [58] | [65] | * | |
(120347) Salacia (2004 SB60) | [58] | [58,66] | * | |
(136108) Haumea | [58,67,68] | Namaka, Hi’iaka | ||
(136199) Eris (2003 UB313) | [69] | [70] | Dysnomia | |
(136472) Makemake (2005 FY9) | [68,71] | * | ||
(148780) Altjira (2001 UQ18) | [58] | [58] | ||
(174567) Varda (2003 MW12) | [58] | [72] | * | |
(136108) Haumea II Namaka | [3] | [3] | [67] | |
(136108) Haumea I Hi’iaka | [3] | [3] | [67] | |
(136199) Eris I Dysnomia | [3] | [3] | [70] |
References
- Peale, S.J.; Cassen, P.; Reynolds, R.T. Melting of Io by tidal dissipation. Science 1979, 203, 892–894. [Google Scholar] [CrossRef]
- Meyer, J.; Wisdom, J. Tidal heating in Enceladus. Icarus 2007, 188, 535–539. [Google Scholar] [CrossRef]
- Saxena, P.; Renaud, J.P.; Henning, W.G.; Jutzi, M.; Hurforda, T. Relevance of tidal heating on large TNOs. Icarus 2018, 302, 245–260. [Google Scholar] [CrossRef]
- Dressing, C.D.; Charbonneau, D. The occurrence rate of small planets around small stars. Astrophys. J. 2013, 767, 95. [Google Scholar] [CrossRef]
- Gillon, M.; Jehin, E.; Lederer, S.M.; Delrez, L.; de Wit, J.; Burdanov, A.; van Grootel, V.; Burgasser, A.J.; Triaud, A.H.M.J.; Opitom, C.; et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 2016, 533, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Gillon, M.; Triaud, A.H.M.J.; Demory, B.O.; Jehin, E.; Agol, E.; Deck, K.M.; Lederer, S.M.; de Wit, J.; Burdanov, A.; Ingalls, J.G.; et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 2017, 542, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Solar System Bodies; Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) and National Araeronatics and Space Agengy (NASA): Pasadena, CA, USA, 1996. Available online: https://ssd.jpl.nasa.gov/?bodies (accessed on 13 February 2018).
- JPL Small-Body Database Search Engine; Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) and National Araeronatics and Space Agengy (NASA): Pasadena, CA, USA, 1996. Available online: https://ssd.jpl.nasa.gov/sbdb_query.cgi (accessed on 13 February 2018).
- Steadly, R.S.; Robinson, M.S. The Astronomical Almanac for the Year 2012: Data for Astronomy, Space Sciences, Geodesy, Surveying, Navigation and other Applications; U.S. Government Printing Office: St. Louis, MO, USA, 2011; ISBN 978-0-7077-41215.
- Van Grootel, V.; Fernandes, C.S.; Gillon, M.; Jehin, E.; Manfroid, J.; Scuflaire, R.; Burgasser, A.J.; Barkaoui, K.; Benkhaldoun, Z.; Burdanov, A.; et al. Stellar parameters for Trappist-1. Astrophys. J. 2018, 853, 30. [Google Scholar] [CrossRef]
- Grimm, S.L.; Demory, B.-O.; Gillon, M.; Dorn, C.; Agol, E.; Burdanov, A.; Delrez, L.; Sestovic, M.; Triaud, A.H.M.J.; Turbet, M.; et al. The nature of the TRAPPIST-1 exoplanets. Astron. Astrophys. 2018, 613, A68. [Google Scholar] [CrossRef]
- Delrez, L.; Gillon, M.; Triaud, A.H.M.J.; Demory, B.-O.; de Wit, J.; Ingalls, J.G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A.J.; et al. Early 2017 observations of TRAPPIST-1 with Spitzer. Mon. Not. R. Astron. Soc. 2018, 475, 3577–3597. [Google Scholar] [CrossRef]
- Guennebaud, G.; Jacob, B. Eigen v3 [C++ library]. 2010. Available online: http://eigen.tuxfamily.org (accessed on 13 February 2018).
- Hanson, B. Mercury, up-close again. Introduction. Science 2008, 321, 58. [Google Scholar] [CrossRef][Green Version]
- Head, J.W.; Chapman, C.R.; Strom, R.G.; Fassett, C.I.; Denevi, B.W.; Blewett, D.T.; Ernst, C.M.; Watters, T.R.; Solomon, S.C.; Murchie, S.L.; et al. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 2011, 333, 1853–1856. [Google Scholar] [CrossRef]
- Shalygin, E.V.; Markiewicz, W.J.; Basilevsky, A.T.; Titov, D.V.; Ignatiev, N.I.; Head, J.W. Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys. Res. Lett. 2015, 42, 4762–4769. [Google Scholar] [CrossRef]
- Armann, M.; Tackley, P.J. Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: Two-dimensional models. J. Geophys. Res. Planets 2012, 117, E12003. [Google Scholar] [CrossRef]
- Ulmschneider, P. Intelligent Life in the Universe: Principles and Requirements Behind Its Emergence, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-32836-0. [Google Scholar]
- Scholz, M. Astrobiologie; Springer Spektrum: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-47036-7. [Google Scholar]
- Mikhail, S.; Heap, M.J. Hot climate inhibits volcanism on Venus: Constraints from rock deformation experiments and argon isotope geochemistry. Phys. Earth Planet. Inter. 2017, 268, 18–34. [Google Scholar] [CrossRef]
- Spudis, P.D. Volcanism on the Moon. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., Stix, J., Eds.; Academic Press: London, UK, 2015; Volume 39, pp. 689–700. ISBN 978-0-12-385938-9. [Google Scholar]
- Weber, R.C.; Lin, P.-Y.; Garnero, E.J.; Williams, Q.; Lognonné, P. Seismic detection of the lunar core. Science 2011, 331, 309–312. [Google Scholar] [CrossRef]
- Anderson, J.D.; Schubert, G.; Jacobson, R.A.; Lau, E.L.; Moore, W.B.; Sjogren, W.L. Europa’s differentiated internal structure: Inferences from four Galileo encounters. Science 1998, 281, 2019–2022. [Google Scholar] [CrossRef]
- Vance, S.; Bouffard, M.; Choukroun, M.; Sotin, C. Ganymede׳s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 2014, 96, 62–70. [Google Scholar] [CrossRef]
- Showman, A.P.; Malhotra, R. The Galilean satellites. Science 1999, 286, 77–84. [Google Scholar] [CrossRef]
- Hansen, C.J.; Esposito, L.; Stewart, A.I.F.; Colwell, J.; Hendrix, A.; Pryor, W.; Shemansky, D.; West, R. Enceladus’ water vapor plume. Science 2006, 311, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Grasset, O.; Sotin, C.; Deschamps, F. On the internal structure and dynamics of Titan. Planet. Space Sci. 2000, 48, 617–636. [Google Scholar] [CrossRef]
- Beuthe, M.; Rivoldini, A.; Trinh, A. Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys. Res. Lett. 2016, 43, 10088–10096. [Google Scholar] [CrossRef]
- Hussmann, H.; Sohl, F.; Spohn, T. Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 2006, 185, 258–273. [Google Scholar] [CrossRef]
- Tittemore, W.C.; Wisdom, J. Tidal evolution of the Uranian satellites: III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities. Icarus 1990, 85, 394–443. [Google Scholar] [CrossRef]
- Bergstralh, J.T.; Miner, E.D.; Matthews, M.S. Uranus; The University of Arizona Press: Tucson, AZ, USA, 1991; ISBN 0-8165-1208-6. [Google Scholar]
- Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L.A.; Castillo-Rogez, J.C.; Quick, L.C.; Byrne, S.; Preusker, F.; O’Brien, D.P.; Schmedemann, N.; et al. Cryovolcanism on Ceres. Science 2016, 353, aaf4286. [Google Scholar] [CrossRef]
- Desch, S.J.; Cook, J.C.; Doggetta, T.C.; Portera, S.B. Thermal evolution of Kuiper belt objects, with implications for cryovolcanism. Icarus 2009, 202, 694–714. [Google Scholar] [CrossRef]
- Dumas, C.; Carry, B.; Hestroffer, D.; Merlin, F. High-contrast observations of (136108) Haumea. Astron. Astrophys. 2011, 528, A105. [Google Scholar] [CrossRef][Green Version]
- Costa, E.; Méndez, R.A.; Jao, W.-C.; Henry, T.J.; Subasavage, J.P.; Ianna, P.A. The solar neighborhood. XVI. Parallaxes from CTIOPI: Final results from the 1.5 m Telescope Program. Astron. J. 2006, 132, 1234–1247. [Google Scholar] [CrossRef]
- Kasting, J.F.; Whitmire, D.P.; Reynolds, R.T. Habitable zones around main sequence stars. Icarus 1993, 101, 108–128. [Google Scholar] [CrossRef]
- Selsis, F.; Kasting, J.F.; Levrard, B.; Paillet, J.; Ribas, I.; Delfosse, X. Habitable planets around the star Gliese 581? Astron. Astrophys. 2007, 476, 1373–1387. [Google Scholar] [CrossRef]
- Kane, S.R.; Gelino, D.M. The habitable zone gallery. Publ. Astron. Soc. Pac. 2012, 124, 323–328. [Google Scholar] [CrossRef]
- Kopparapu, R.K. A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. Astrophys. J. Lett. 2013, 767, L8. [Google Scholar] [CrossRef]
- Bolmont, E.; Selsis, F.; Owen, J.E.; Ribas, I.; Raymond, S.N.; Leconte, J.; Gillon, M. Water loss from terrestrial planets orbiting ultracool dwarfs: Implications for the planets of TRAPPIST-1. Mon. Not. R. Astron. Soc. 2017, 464, 3728–3741. [Google Scholar] [CrossRef]
- Bourrier, V.; de Wit, J.; Bolmont, E.; Stamenković, V.; Wheatley, P.J.; Burgasser, A.J.; Delrez, L.; Demory, B.-O.; Ehrenreich, D.; Gillon, M.; et al. Temporal evolution of the high-energy irradiation and water content of TRAPPIST-1 exoplanets. Astron. J. 2017, 154, 121. [Google Scholar] [CrossRef]
- Lincowski, A.P.; Meadows, V.S.; Crisp, D.; Robinson, T.D.; Luger, R.; Lustig-Yaeger, J.; Arney, G.N. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system. Astrophys. J. 2018, 867, 76. [Google Scholar] [CrossRef]
- Barr, A.C.; Dobos, V.; Kiss, L.L. Interior structures and tidal heating in the TRAPPIST-1 planets. Astron. Astrophys. 2018, 613, A37. [Google Scholar] [CrossRef]
- Kislyakova, K.G.; Noack, L.; Johnstone, C.P.; Zaitsev, V.V.; Fossati, L.; Lammer, H.; Khodachenko, M.L.; Odert, P.; Güdel, M. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nat. Astron. 2017, 1, 878–885. [Google Scholar] [CrossRef]
- Banfield, D.; Murray, N. A dynamical history of the inner Neptunian satellites. Icarus 1992, 99, 390–401. [Google Scholar] [CrossRef]
- Cameron, A.G.W.; Truran, J.W. The supernova trigger for formation of the solar system. Icarus 1977, 30, 447–461. [Google Scholar] [CrossRef]
- Gaches, B.A.L.; Walch, S.; Offner, S.S.R.; Münker, C. Aluminum-26 enrichment in the surface of protostellar disks due to protostellar cosmic rays. Astrophys. J. 2020, 898, 79. [Google Scholar] [CrossRef]
- Young, E.D.; Kohl, I.E.; Warren, P.H.; Rubie, D.C.; Jacobson, S.A.; Morbidelli, A. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 2016, 351, 493–496. [Google Scholar] [CrossRef]
- Burgasser, A.J.; Mamajek, E.E. On the age of the TRAPPIST-1 system. Astrophys. J. 2017, 845, 110. [Google Scholar] [CrossRef]
- Dobos, V.; Barr, A.C.; Kiss, L.L. Tidal heating and the habitability of the TRAPPIST-1 exoplanets. Astron. Astrophys. 2019, 624, A2. [Google Scholar] [CrossRef]
- Hay, H.C.F.C.; Matsuyama, I. Tides between the TRAPPIST-1 planets. Astrophys. J. 2019, 875, 22. [Google Scholar] [CrossRef]
- Campante, T.L.; Barclay, T.; Swift, J.J.; Huber, D.; Adibekyan, V.Z.; Cochran, W.; Burke, C.J.; Isaacson, H.; Quintana, E.V.; Davies, G.R.; et al. An ancient extrasolar system with five sub-Earth-size planets. Astrophys. J. 2015, 799, 170. [Google Scholar] [CrossRef]
- Lovis, C.; Ségransan, D.; Mayor, M.; Udry, S.; Benz, W.; Bertaux, J.L.; Bouchy, F.; Correia, A.C.M.; Laskar, J.; Lo Curto, G.; et al. The HARPS search for southern extra-solar planets: XXVIII. Up to seven planets orbiting HD 10180: Probing the architecture of low-mass planetary systems. Astron. Astrophys. 2011, 528, 112. [Google Scholar] [CrossRef]
- Lillo-Box, J.; Figueira, P.; Leleu, A.; Acuña, L.; Faria, J.P.; Hara, N.; Santos, N.C.; Correia, A.C.M.; Robutel, P.; Deleuil, M.; et al. Planetary system LHS 1140 revisited with ESPRESSO and TESS. Astron. Astrophys. 2020, 642, A121. [Google Scholar] [CrossRef]
- Lissauer, J.J.; Fabrycky, D.C.; Ford, E.B.; Borucki, W.J.; Fressin, F.; Marcy, G.W.; Orosz, J.A.; Rowe, J.F.; Torres, G.; Welsh, W.F.; et al. A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 2011, 470, 53–58. [Google Scholar] [CrossRef]
- Kipping, D.M.; Nesvorný, D.; Buchhave, L.A.; Hartman, J.; Bakos, G.Á.; Schmitt, A.R. The hunt for exomoons with Kepler (HEK). IV. A search for moons around eight M dwarfs. Astrophys. J. 2014, 784, 28. [Google Scholar] [CrossRef][Green Version]
- Jontof-Hutter, D.; Rowe, J.F.; Lissauer, J.J.; Fabrycky, D.C.; Ford, E.B. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature 2015, 522, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Vilenius, E.; Kiss, C.; Mommert, M.; Müller, T.; Santos-Sanz, P.; Pal, A.; Stansberry, J.; Mueller, M.; Peixinho, N.; Fornasier, S.; et al. “TNOs are Cool”: A survey of the trans-Neptunian region. Astron. Astrophys. 2012, 541, A94. [Google Scholar] [CrossRef]
- Benecchi, S.D.; Noll, K.S.; Grundy, W.M.; Levison, H.F. (47171) 1999 TC36, A transneptunian triple. Icarus 2010, 207, 978–991. [Google Scholar] [CrossRef]
- Braga-Ribas, F.; Sicardy, B.; Ortiz, J.L.; Lellouch, E.; Tancredi, G.; Lecacheux, J.; Vieira-Martins, R.; Camargo, J.I.B.; Assafin, M.; Behrend, R.; et al. The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. Astrophys. J. 2013, 773, 26. [Google Scholar] [CrossRef]
- Fraser, W.C.; Batygin, K.; Brown, M.E.; Bouchez, A. The mass, orbit, and tidal evolution of the Quaoar–Weywot system. Icarus 2013, 222, 357–363. [Google Scholar] [CrossRef]
- Grundy, W.M.; Noll, K.S.; Stephens, D.C. Diverse albedos of small trans-neptunian objects. Icarus 2005, 176, 184–191. [Google Scholar] [CrossRef]
- Grundy, W.M.; Stansberry, J.A.; Noll, K.S.; Stephens, D.C.; Trilling, D.E.; Kern, S.D.; Spencer, J.R.; Cruikshank, D.P.; Levison, H.F. The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur. Icarus 2007, 191, 286–297. [Google Scholar] [CrossRef]
- Grundy, W.M.; Noll, K.S.; Nimmo, F.; Roe, H.G.; Buie, M.W.; Porter, S.B.; Benecchi, S.D.; Stephens, D.C.; Levison, H.F.; Stansberry, J.A. Five new and three improved mutual orbits of transneptunian binaries. Icarus 2011, 213, 678–692. [Google Scholar] [CrossRef]
- Carry, B.; Hestroffer, D.; DeMeo, F.E.; Thirouin, A.; Berthier, J.; Lacerda, P.; Sicardy, B.; Doressoundiram, A.; Dumas, C.; Farrelly, D.; et al. Integral-field spectroscopy of (90482) Orcus-Vanth. Astron. Astrophys. 2011, 534, A115. [Google Scholar] [CrossRef]
- Stansberry, J.A.; Grundy, W.M.; Mueller, M.; Benecchi, S.D.; Rieke, G.H.; Noll, K.S.; Buie, M.W.; Levison, H.F.; Porter, S.B.; Roe, H.G. Physical properties of trans-neptunian binaries (120347) Salacia–Actaea and (42355) Typhon–Echidna. Icarus 2012, 219, 676–688. [Google Scholar] [CrossRef]
- Ragozzine, D.; Brown, M.E. Orbits and masses of the satellites of the dwarft planet Humea (2003 EL61). Astron. J. 2009, 137, 4766–4776. [Google Scholar] [CrossRef]
- Ortiz, J.L.; Sicardy, B.; Braga-Ribas, F.; Alvarez-Candal, A.; Lellouch, E.; Duffard, R.; Pinilla-Alonso, N.; Ivanov, V.D.; Littlefair, S.P.; Camargo, J.I.B.; et al. Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature 2012, 491, 566–569. [Google Scholar] [CrossRef]
- Sicardy, B.; Ortiz, J.L.; Assafin, M.; Jehin, E.; Maury, A.; Lellouch, E.; Gil-Hutton, R.; Braga-Ribas, F.; Colas, F.; Lecacheux, J.; et al. Size, density, albedo and atmosphere limit of dwarf planet Eris from a stellar occultation. In Proceedings of the European Planetary Science Congress—Division for Planetary Sciences (EPSC-DPS) Joint Meeting 2011, Nantes, France, 2–7 October 2011; EPSC Abstracts, 6, EPSC-DPS2011-137-8. Available online: http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-137-8.pdf (accessed on 13 February 2018).
- Brown, M.E.; Schaller, E.L. The mass of dwarf planet Eris. Science 2007, 316, LP-1585. [Google Scholar] [CrossRef]
- Brown, M.E. On the size, shape, and density of dwarf planet Makemake. Astrophys. J. 2013, 767, L7. [Google Scholar] [CrossRef]
- Grundy, W.M.; Porter, S.B.; Benecchi, S.D.; Roe, H.G.; Noll, K.S.; Trujillo, C.A.; Thirouin, A.; Stansberry, J.A.; Barker, E.; Levison, H.F. The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmarë. Icarus 2015, 257, 130–138. [Google Scholar] [CrossRef]
Object | a [km] | e | n [rad/day] | R [km] | M [kg] | {Atotal·(ΔAtotal/Δt)}max [m2/s4d] |
---|---|---|---|---|---|---|
TRAPPIST-1b | 1.73 × 106 | 0.0062 | 4.1586 | 7149.85 | 6.08 × 1024 | 9.36× 10−3 |
TRAPPIST-1c | 2.37 × 106 | 0.0065 | 2.5944 | 6984.02 | 6.91 × 1024 | 8.50 × 10−4 |
(J1) Io | 4.22 × 105 | 0.0041 | 3.5516 | 1821.60 | 8.93 × 1022 | 2.43 × 10−4 |
TRAPPIST-1d | 3.33 × 106 | 0.0084 | 1.5514 | 5000.43 | 1.77 × 1024 | 3.36 × 10−5 |
TRAPPIST-1e | 4.38 × 106 | 0.0051 | 1.0302 | 5804.07 | 4.61 × 1024 | 5.70 × 10−6 |
TRAPPIST-1f | 5.76 × 106 | 0.0101 | 0.6825 | 6671.49 | 5.58 × 1024 | 9.98 × 10−7 |
Ganymede | 1.07 × 106 | 0.0013 | 0.8782 | 2631.20 | 1.48 × 1023 | 5.24 × 10−7 |
TRAPPIST-1g | 7.01 × 106 | 0.0021 | 0.5086 | 7322.06 | 6.86 × 1024 | 2.62 × 10−7 |
TRAPPIST-1h | 9.27 × 106 | 0.0057 | 0.3348 | 4930.27 | 1.98 × 1024 | 1.50 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paschek, K.; Roßmann, A.; Hausmann, M.; Hildenbrand, G. Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems. Appl. Sci. 2021, 11, 8624. https://doi.org/10.3390/app11188624
Paschek K, Roßmann A, Hausmann M, Hildenbrand G. Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems. Applied Sciences. 2021; 11(18):8624. https://doi.org/10.3390/app11188624
Chicago/Turabian StylePaschek, Klaus, Arthur Roßmann, Michael Hausmann, and Georg Hildenbrand. 2021. "Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems" Applied Sciences 11, no. 18: 8624. https://doi.org/10.3390/app11188624
APA StylePaschek, K., Roßmann, A., Hausmann, M., & Hildenbrand, G. (2021). Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems. Applied Sciences, 11(18), 8624. https://doi.org/10.3390/app11188624