Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Tidal Accelerations
2.2. Data
2.3. Simulation of Orbital Motion
3. Results
3.1. The Solar System
3.2. Extrasolar Planetary System TRAPPIST-1
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
TNO | Radius | Mass | Orbital Elements | Moons |
---|---|---|---|---|
(19521) Chaos (1998 WH24) | [58] | |||
(38628) Huya (2000 EB173) | [58] | |||
(47171) Lempo (1999 TC36) | [58] | [59] | ||
(50000) Quaoar (2002 LM60) | [58,60] | [60,61] | * | |
(58534) Logos (1997 CQ29) | [62] | [62] | * | |
(65489) Ceto (2003 FX128) | [58] | [63] | * | |
(66652) Borasisi (1999 RZ253) | [58] | [64] | * | |
(88611) Teharonhiawako (2001 QT297) | [58] | [64] | * | |
(90377) Sedna (2003 VB12) | [58] | |||
(90482) Orcus (2004 DW) | [58] | [65] | * | |
(120347) Salacia (2004 SB60) | [58] | [58,66] | * | |
(136108) Haumea | [58,67,68] | Namaka, Hi’iaka | ||
(136199) Eris (2003 UB313) | [69] | [70] | Dysnomia | |
(136472) Makemake (2005 FY9) | [68,71] | * | ||
(148780) Altjira (2001 UQ18) | [58] | [58] | ||
(174567) Varda (2003 MW12) | [58] | [72] | * | |
(136108) Haumea II Namaka | [3] | [3] | [67] | |
(136108) Haumea I Hi’iaka | [3] | [3] | [67] | |
(136199) Eris I Dysnomia | [3] | [3] | [70] |
References
- Peale, S.J.; Cassen, P.; Reynolds, R.T. Melting of Io by tidal dissipation. Science 1979, 203, 892–894. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.; Wisdom, J. Tidal heating in Enceladus. Icarus 2007, 188, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Renaud, J.P.; Henning, W.G.; Jutzi, M.; Hurforda, T. Relevance of tidal heating on large TNOs. Icarus 2018, 302, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Dressing, C.D.; Charbonneau, D. The occurrence rate of small planets around small stars. Astrophys. J. 2013, 767, 95. [Google Scholar] [CrossRef] [Green Version]
- Gillon, M.; Jehin, E.; Lederer, S.M.; Delrez, L.; de Wit, J.; Burdanov, A.; van Grootel, V.; Burgasser, A.J.; Triaud, A.H.M.J.; Opitom, C.; et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 2016, 533, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillon, M.; Triaud, A.H.M.J.; Demory, B.O.; Jehin, E.; Agol, E.; Deck, K.M.; Lederer, S.M.; de Wit, J.; Burdanov, A.; Ingalls, J.G.; et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 2017, 542, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Solar System Bodies; Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) and National Araeronatics and Space Agengy (NASA): Pasadena, CA, USA, 1996. Available online: https://ssd.jpl.nasa.gov/?bodies (accessed on 13 February 2018).
- JPL Small-Body Database Search Engine; Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) and National Araeronatics and Space Agengy (NASA): Pasadena, CA, USA, 1996. Available online: https://ssd.jpl.nasa.gov/sbdb_query.cgi (accessed on 13 February 2018).
- Steadly, R.S.; Robinson, M.S. The Astronomical Almanac for the Year 2012: Data for Astronomy, Space Sciences, Geodesy, Surveying, Navigation and other Applications; U.S. Government Printing Office: St. Louis, MO, USA, 2011; ISBN 978-0-7077-41215.
- Van Grootel, V.; Fernandes, C.S.; Gillon, M.; Jehin, E.; Manfroid, J.; Scuflaire, R.; Burgasser, A.J.; Barkaoui, K.; Benkhaldoun, Z.; Burdanov, A.; et al. Stellar parameters for Trappist-1. Astrophys. J. 2018, 853, 30. [Google Scholar] [CrossRef] [Green Version]
- Grimm, S.L.; Demory, B.-O.; Gillon, M.; Dorn, C.; Agol, E.; Burdanov, A.; Delrez, L.; Sestovic, M.; Triaud, A.H.M.J.; Turbet, M.; et al. The nature of the TRAPPIST-1 exoplanets. Astron. Astrophys. 2018, 613, A68. [Google Scholar] [CrossRef]
- Delrez, L.; Gillon, M.; Triaud, A.H.M.J.; Demory, B.-O.; de Wit, J.; Ingalls, J.G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A.J.; et al. Early 2017 observations of TRAPPIST-1 with Spitzer. Mon. Not. R. Astron. Soc. 2018, 475, 3577–3597. [Google Scholar] [CrossRef]
- Guennebaud, G.; Jacob, B. Eigen v3 [C++ library]. 2010. Available online: http://eigen.tuxfamily.org (accessed on 13 February 2018).
- Hanson, B. Mercury, up-close again. Introduction. Science 2008, 321, 58. [Google Scholar] [CrossRef] [Green Version]
- Head, J.W.; Chapman, C.R.; Strom, R.G.; Fassett, C.I.; Denevi, B.W.; Blewett, D.T.; Ernst, C.M.; Watters, T.R.; Solomon, S.C.; Murchie, S.L.; et al. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 2011, 333, 1853–1856. [Google Scholar] [CrossRef] [Green Version]
- Shalygin, E.V.; Markiewicz, W.J.; Basilevsky, A.T.; Titov, D.V.; Ignatiev, N.I.; Head, J.W. Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys. Res. Lett. 2015, 42, 4762–4769. [Google Scholar] [CrossRef]
- Armann, M.; Tackley, P.J. Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: Two-dimensional models. J. Geophys. Res. Planets 2012, 117, E12003. [Google Scholar] [CrossRef] [Green Version]
- Ulmschneider, P. Intelligent Life in the Universe: Principles and Requirements Behind Its Emergence, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-32836-0. [Google Scholar]
- Scholz, M. Astrobiologie; Springer Spektrum: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-47036-7. [Google Scholar]
- Mikhail, S.; Heap, M.J. Hot climate inhibits volcanism on Venus: Constraints from rock deformation experiments and argon isotope geochemistry. Phys. Earth Planet. Inter. 2017, 268, 18–34. [Google Scholar] [CrossRef] [Green Version]
- Spudis, P.D. Volcanism on the Moon. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., Stix, J., Eds.; Academic Press: London, UK, 2015; Volume 39, pp. 689–700. ISBN 978-0-12-385938-9. [Google Scholar]
- Weber, R.C.; Lin, P.-Y.; Garnero, E.J.; Williams, Q.; Lognonné, P. Seismic detection of the lunar core. Science 2011, 331, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.D.; Schubert, G.; Jacobson, R.A.; Lau, E.L.; Moore, W.B.; Sjogren, W.L. Europa’s differentiated internal structure: Inferences from four Galileo encounters. Science 1998, 281, 2019–2022. [Google Scholar] [CrossRef]
- Vance, S.; Bouffard, M.; Choukroun, M.; Sotin, C. Ganymede׳s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 2014, 96, 62–70. [Google Scholar] [CrossRef]
- Showman, A.P.; Malhotra, R. The Galilean satellites. Science 1999, 286, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Hansen, C.J.; Esposito, L.; Stewart, A.I.F.; Colwell, J.; Hendrix, A.; Pryor, W.; Shemansky, D.; West, R. Enceladus’ water vapor plume. Science 2006, 311, 1422–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasset, O.; Sotin, C.; Deschamps, F. On the internal structure and dynamics of Titan. Planet. Space Sci. 2000, 48, 617–636. [Google Scholar] [CrossRef]
- Beuthe, M.; Rivoldini, A.; Trinh, A. Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys. Res. Lett. 2016, 43, 10088–10096. [Google Scholar] [CrossRef] [Green Version]
- Hussmann, H.; Sohl, F.; Spohn, T. Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 2006, 185, 258–273. [Google Scholar] [CrossRef]
- Tittemore, W.C.; Wisdom, J. Tidal evolution of the Uranian satellites: III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities. Icarus 1990, 85, 394–443. [Google Scholar] [CrossRef]
- Bergstralh, J.T.; Miner, E.D.; Matthews, M.S. Uranus; The University of Arizona Press: Tucson, AZ, USA, 1991; ISBN 0-8165-1208-6. [Google Scholar]
- Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L.A.; Castillo-Rogez, J.C.; Quick, L.C.; Byrne, S.; Preusker, F.; O’Brien, D.P.; Schmedemann, N.; et al. Cryovolcanism on Ceres. Science 2016, 353, aaf4286. [Google Scholar] [CrossRef] [Green Version]
- Desch, S.J.; Cook, J.C.; Doggetta, T.C.; Portera, S.B. Thermal evolution of Kuiper belt objects, with implications for cryovolcanism. Icarus 2009, 202, 694–714. [Google Scholar] [CrossRef]
- Dumas, C.; Carry, B.; Hestroffer, D.; Merlin, F. High-contrast observations of (136108) Haumea. Astron. Astrophys. 2011, 528, A105. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.; Méndez, R.A.; Jao, W.-C.; Henry, T.J.; Subasavage, J.P.; Ianna, P.A. The solar neighborhood. XVI. Parallaxes from CTIOPI: Final results from the 1.5 m Telescope Program. Astron. J. 2006, 132, 1234–1247. [Google Scholar] [CrossRef] [Green Version]
- Kasting, J.F.; Whitmire, D.P.; Reynolds, R.T. Habitable zones around main sequence stars. Icarus 1993, 101, 108–128. [Google Scholar] [CrossRef]
- Selsis, F.; Kasting, J.F.; Levrard, B.; Paillet, J.; Ribas, I.; Delfosse, X. Habitable planets around the star Gliese 581? Astron. Astrophys. 2007, 476, 1373–1387. [Google Scholar] [CrossRef] [Green Version]
- Kane, S.R.; Gelino, D.M. The habitable zone gallery. Publ. Astron. Soc. Pac. 2012, 124, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Kopparapu, R.K. A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. Astrophys. J. Lett. 2013, 767, L8. [Google Scholar] [CrossRef] [Green Version]
- Bolmont, E.; Selsis, F.; Owen, J.E.; Ribas, I.; Raymond, S.N.; Leconte, J.; Gillon, M. Water loss from terrestrial planets orbiting ultracool dwarfs: Implications for the planets of TRAPPIST-1. Mon. Not. R. Astron. Soc. 2017, 464, 3728–3741. [Google Scholar] [CrossRef] [Green Version]
- Bourrier, V.; de Wit, J.; Bolmont, E.; Stamenković, V.; Wheatley, P.J.; Burgasser, A.J.; Delrez, L.; Demory, B.-O.; Ehrenreich, D.; Gillon, M.; et al. Temporal evolution of the high-energy irradiation and water content of TRAPPIST-1 exoplanets. Astron. J. 2017, 154, 121. [Google Scholar] [CrossRef] [Green Version]
- Lincowski, A.P.; Meadows, V.S.; Crisp, D.; Robinson, T.D.; Luger, R.; Lustig-Yaeger, J.; Arney, G.N. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system. Astrophys. J. 2018, 867, 76. [Google Scholar] [CrossRef] [Green Version]
- Barr, A.C.; Dobos, V.; Kiss, L.L. Interior structures and tidal heating in the TRAPPIST-1 planets. Astron. Astrophys. 2018, 613, A37. [Google Scholar] [CrossRef] [Green Version]
- Kislyakova, K.G.; Noack, L.; Johnstone, C.P.; Zaitsev, V.V.; Fossati, L.; Lammer, H.; Khodachenko, M.L.; Odert, P.; Güdel, M. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nat. Astron. 2017, 1, 878–885. [Google Scholar] [CrossRef]
- Banfield, D.; Murray, N. A dynamical history of the inner Neptunian satellites. Icarus 1992, 99, 390–401. [Google Scholar] [CrossRef]
- Cameron, A.G.W.; Truran, J.W. The supernova trigger for formation of the solar system. Icarus 1977, 30, 447–461. [Google Scholar] [CrossRef]
- Gaches, B.A.L.; Walch, S.; Offner, S.S.R.; Münker, C. Aluminum-26 enrichment in the surface of protostellar disks due to protostellar cosmic rays. Astrophys. J. 2020, 898, 79. [Google Scholar] [CrossRef]
- Young, E.D.; Kohl, I.E.; Warren, P.H.; Rubie, D.C.; Jacobson, S.A.; Morbidelli, A. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 2016, 351, 493–496. [Google Scholar] [CrossRef] [Green Version]
- Burgasser, A.J.; Mamajek, E.E. On the age of the TRAPPIST-1 system. Astrophys. J. 2017, 845, 110. [Google Scholar] [CrossRef] [Green Version]
- Dobos, V.; Barr, A.C.; Kiss, L.L. Tidal heating and the habitability of the TRAPPIST-1 exoplanets. Astron. Astrophys. 2019, 624, A2. [Google Scholar] [CrossRef] [Green Version]
- Hay, H.C.F.C.; Matsuyama, I. Tides between the TRAPPIST-1 planets. Astrophys. J. 2019, 875, 22. [Google Scholar] [CrossRef] [Green Version]
- Campante, T.L.; Barclay, T.; Swift, J.J.; Huber, D.; Adibekyan, V.Z.; Cochran, W.; Burke, C.J.; Isaacson, H.; Quintana, E.V.; Davies, G.R.; et al. An ancient extrasolar system with five sub-Earth-size planets. Astrophys. J. 2015, 799, 170. [Google Scholar] [CrossRef] [Green Version]
- Lovis, C.; Ségransan, D.; Mayor, M.; Udry, S.; Benz, W.; Bertaux, J.L.; Bouchy, F.; Correia, A.C.M.; Laskar, J.; Lo Curto, G.; et al. The HARPS search for southern extra-solar planets: XXVIII. Up to seven planets orbiting HD 10180: Probing the architecture of low-mass planetary systems. Astron. Astrophys. 2011, 528, 112. [Google Scholar] [CrossRef] [Green Version]
- Lillo-Box, J.; Figueira, P.; Leleu, A.; Acuña, L.; Faria, J.P.; Hara, N.; Santos, N.C.; Correia, A.C.M.; Robutel, P.; Deleuil, M.; et al. Planetary system LHS 1140 revisited with ESPRESSO and TESS. Astron. Astrophys. 2020, 642, A121. [Google Scholar] [CrossRef]
- Lissauer, J.J.; Fabrycky, D.C.; Ford, E.B.; Borucki, W.J.; Fressin, F.; Marcy, G.W.; Orosz, J.A.; Rowe, J.F.; Torres, G.; Welsh, W.F.; et al. A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 2011, 470, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Kipping, D.M.; Nesvorný, D.; Buchhave, L.A.; Hartman, J.; Bakos, G.Á.; Schmitt, A.R. The hunt for exomoons with Kepler (HEK). IV. A search for moons around eight M dwarfs. Astrophys. J. 2014, 784, 28. [Google Scholar] [CrossRef] [Green Version]
- Jontof-Hutter, D.; Rowe, J.F.; Lissauer, J.J.; Fabrycky, D.C.; Ford, E.B. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature 2015, 522, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Vilenius, E.; Kiss, C.; Mommert, M.; Müller, T.; Santos-Sanz, P.; Pal, A.; Stansberry, J.; Mueller, M.; Peixinho, N.; Fornasier, S.; et al. “TNOs are Cool”: A survey of the trans-Neptunian region. Astron. Astrophys. 2012, 541, A94. [Google Scholar] [CrossRef] [Green Version]
- Benecchi, S.D.; Noll, K.S.; Grundy, W.M.; Levison, H.F. (47171) 1999 TC36, A transneptunian triple. Icarus 2010, 207, 978–991. [Google Scholar] [CrossRef] [Green Version]
- Braga-Ribas, F.; Sicardy, B.; Ortiz, J.L.; Lellouch, E.; Tancredi, G.; Lecacheux, J.; Vieira-Martins, R.; Camargo, J.I.B.; Assafin, M.; Behrend, R.; et al. The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. Astrophys. J. 2013, 773, 26. [Google Scholar] [CrossRef]
- Fraser, W.C.; Batygin, K.; Brown, M.E.; Bouchez, A. The mass, orbit, and tidal evolution of the Quaoar–Weywot system. Icarus 2013, 222, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Grundy, W.M.; Noll, K.S.; Stephens, D.C. Diverse albedos of small trans-neptunian objects. Icarus 2005, 176, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Grundy, W.M.; Stansberry, J.A.; Noll, K.S.; Stephens, D.C.; Trilling, D.E.; Kern, S.D.; Spencer, J.R.; Cruikshank, D.P.; Levison, H.F. The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur. Icarus 2007, 191, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Grundy, W.M.; Noll, K.S.; Nimmo, F.; Roe, H.G.; Buie, M.W.; Porter, S.B.; Benecchi, S.D.; Stephens, D.C.; Levison, H.F.; Stansberry, J.A. Five new and three improved mutual orbits of transneptunian binaries. Icarus 2011, 213, 678–692. [Google Scholar] [CrossRef] [Green Version]
- Carry, B.; Hestroffer, D.; DeMeo, F.E.; Thirouin, A.; Berthier, J.; Lacerda, P.; Sicardy, B.; Doressoundiram, A.; Dumas, C.; Farrelly, D.; et al. Integral-field spectroscopy of (90482) Orcus-Vanth. Astron. Astrophys. 2011, 534, A115. [Google Scholar] [CrossRef] [Green Version]
- Stansberry, J.A.; Grundy, W.M.; Mueller, M.; Benecchi, S.D.; Rieke, G.H.; Noll, K.S.; Buie, M.W.; Levison, H.F.; Porter, S.B.; Roe, H.G. Physical properties of trans-neptunian binaries (120347) Salacia–Actaea and (42355) Typhon–Echidna. Icarus 2012, 219, 676–688. [Google Scholar] [CrossRef]
- Ragozzine, D.; Brown, M.E. Orbits and masses of the satellites of the dwarft planet Humea (2003 EL61). Astron. J. 2009, 137, 4766–4776. [Google Scholar] [CrossRef]
- Ortiz, J.L.; Sicardy, B.; Braga-Ribas, F.; Alvarez-Candal, A.; Lellouch, E.; Duffard, R.; Pinilla-Alonso, N.; Ivanov, V.D.; Littlefair, S.P.; Camargo, J.I.B.; et al. Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature 2012, 491, 566–569. [Google Scholar] [CrossRef]
- Sicardy, B.; Ortiz, J.L.; Assafin, M.; Jehin, E.; Maury, A.; Lellouch, E.; Gil-Hutton, R.; Braga-Ribas, F.; Colas, F.; Lecacheux, J.; et al. Size, density, albedo and atmosphere limit of dwarf planet Eris from a stellar occultation. In Proceedings of the European Planetary Science Congress—Division for Planetary Sciences (EPSC-DPS) Joint Meeting 2011, Nantes, France, 2–7 October 2011; EPSC Abstracts, 6, EPSC-DPS2011-137-8. Available online: http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-137-8.pdf (accessed on 13 February 2018).
- Brown, M.E.; Schaller, E.L. The mass of dwarf planet Eris. Science 2007, 316, LP-1585. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.E. On the size, shape, and density of dwarf planet Makemake. Astrophys. J. 2013, 767, L7. [Google Scholar] [CrossRef] [Green Version]
- Grundy, W.M.; Porter, S.B.; Benecchi, S.D.; Roe, H.G.; Noll, K.S.; Trujillo, C.A.; Thirouin, A.; Stansberry, J.A.; Barker, E.; Levison, H.F. The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmarë. Icarus 2015, 257, 130–138. [Google Scholar] [CrossRef] [Green Version]
Object | a [km] | e | n [rad/day] | R [km] | M [kg] | {Atotal·(ΔAtotal/Δt)}max [m2/s4d] |
---|---|---|---|---|---|---|
TRAPPIST-1b | 1.73 × 106 | 0.0062 | 4.1586 | 7149.85 | 6.08 × 1024 | 9.36× 10−3 |
TRAPPIST-1c | 2.37 × 106 | 0.0065 | 2.5944 | 6984.02 | 6.91 × 1024 | 8.50 × 10−4 |
(J1) Io | 4.22 × 105 | 0.0041 | 3.5516 | 1821.60 | 8.93 × 1022 | 2.43 × 10−4 |
TRAPPIST-1d | 3.33 × 106 | 0.0084 | 1.5514 | 5000.43 | 1.77 × 1024 | 3.36 × 10−5 |
TRAPPIST-1e | 4.38 × 106 | 0.0051 | 1.0302 | 5804.07 | 4.61 × 1024 | 5.70 × 10−6 |
TRAPPIST-1f | 5.76 × 106 | 0.0101 | 0.6825 | 6671.49 | 5.58 × 1024 | 9.98 × 10−7 |
Ganymede | 1.07 × 106 | 0.0013 | 0.8782 | 2631.20 | 1.48 × 1023 | 5.24 × 10−7 |
TRAPPIST-1g | 7.01 × 106 | 0.0021 | 0.5086 | 7322.06 | 6.86 × 1024 | 2.62 × 10−7 |
TRAPPIST-1h | 9.27 × 106 | 0.0057 | 0.3348 | 4930.27 | 1.98 × 1024 | 1.50 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paschek, K.; Roßmann, A.; Hausmann, M.; Hildenbrand, G. Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems. Appl. Sci. 2021, 11, 8624. https://doi.org/10.3390/app11188624
Paschek K, Roßmann A, Hausmann M, Hildenbrand G. Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems. Applied Sciences. 2021; 11(18):8624. https://doi.org/10.3390/app11188624
Chicago/Turabian StylePaschek, Klaus, Arthur Roßmann, Michael Hausmann, and Georg Hildenbrand. 2021. "Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems" Applied Sciences 11, no. 18: 8624. https://doi.org/10.3390/app11188624
APA StylePaschek, K., Roßmann, A., Hausmann, M., & Hildenbrand, G. (2021). Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems. Applied Sciences, 11(18), 8624. https://doi.org/10.3390/app11188624