Fast Stepwise Inertial Control Scheme of a DFIG for Reducing Second Frequency Drop
Abstract
:1. Introduction
2. Doubly-Fed Induction Generator Model
3. Frequency Support Schemes of a DFIG
3.1. Conventional Stepwise Inertial Control Scheme
3.2. Proposed Stepwise Inertial Control Scheme of a DFIG
4. System Layout and Case Studies
4.1. Case 1: Constant Wind Speed of 9.5 m/s, Wind Power Penetration of 15%
4.2. Case 2: Constant Wind Speed of 9.5 m/s, Wind Power Penetration of 30%
4.3. Case 3: Ramp down Wind Speed Conditions (Decreasing Wind Speeds from 9.5 to 7.0 m/s in 10 s)
5. Conclusions
- During the FSP, this proposed FFR scheme preserves the FN with less rotor energy released. Thus, the proposed FFR scheme solves the issue that unnecessary rotor speed is released after rebounding the system frequency.
- During the RSRP, based on the second segment power reference function which is an exponential function in time domain, the output of the DFIG decreases smoothly and switches to MPPT without an active power mutation so as to realize the smooth rotor speed recovery and reduce the SFD. Thus, the proposed FFR scheme solves the issue of counterbalancing the performance for smoothing rotor speed recovery while reducing the mechanical stress on the wind turbines and reducing the SFD.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, W.; Ding, L.; Liu, Z.; Zhu, G.; Kheshti, M.; Wu, Q.; Terzija, V. Analytically derived fixed termination time for stepwise inertial control of wind turbines—Part I: Analytical derivation. Int. J. Elect. Power Energy Syst. 2020, 121, 106120. [Google Scholar] [CrossRef]
- Kabsha, M.M.; Rather, Z.H. A New Control Scheme for Fast Frequency Support From HVDC Connected Offshore Wind Farm in Low-Inertia System. IEEE Trans. Sustain. Energy 2020, 11, 1829–1837. [Google Scholar] [CrossRef]
- Lalor, G.; Ritchie, J.; Rourke, S.; Flynn, D.; O’Malley, M.J. Dynamic frequency control with increasing wind generation. IEEE Power Eng. Soc. Gen. Meet. 2004, 2, 1715–1720. [Google Scholar]
- Duval, J.; Meyer, B. Frequency behavior of grid with high penetration rate of wind generation. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–6. [Google Scholar]
- Doherty, R.; Mullane, A.; Nolan, G.; Burke, D.J.; Bryson, A.; O’Malley, M. An Assessment of the Impact of Wind Generation on System Frequency Control. IEEE Trans. Power Syst. 2010, 25, 452–460. [Google Scholar] [CrossRef]
- Kerdphol, T.; Rahman, F.S.; Watanabe, M.; Mitani, Y. Robust Virtual Inertia Control of a Low Inertia Microgrid Considering Frequency Measurement Effects. IEEE Access 2019, 7, 57550–57560. [Google Scholar] [CrossRef]
- Garmroodi, M.; Verbič, G.; Hill, D.J. Frequency Support From Wind Turbine Generators With a Time-Variable Droop Characteristic. IEEE Trans. Sustain. Energy 2018, 9, 676–684. [Google Scholar] [CrossRef]
- Morren, J.; de Haan, S.W.H.; Ferreira, J.A. Contribution of DG units to primary frequency control. In Proceedings of the 2005 International Conference on Future Power Systems, Amsterdam, The Netherlands, 18–18 November 2005; p. 6. [Google Scholar]
- Kundur, P. Power System Stability and Control; China Electric Power Press: Beijing, China, 1994. [Google Scholar]
- Gevorgian, V.; Zhang, Y.; Ela, E. Investigating the impacts of wind generation participation in interconnection frequency response. IEEE Trans. Sustain. Energy 2015, 6, 1004–1012. [Google Scholar] [CrossRef]
- Kheshti, M.; Ding, L.; Bao, W.; Yin, M.; Wu, Q.; Terzija, V. Toward Intelligent Inertial Frequency Participation of Wind Farms for the Grid Frequency Control. IEEE Trans. Ind. Inf. 2020, 16, 6772–6786. [Google Scholar] [CrossRef]
- Attya, A.B.T.; Dominguez-García, J.L. Insights on the Provision of Frequency Support by Wind Power and the Impact on Energy Systems. IEEE Trans. Sustain. Energy 2018, 9, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Tarnowski, G.C.; Kjar, P.C.; Sorensen, P.E.; Ostergaard, J. Variable speed wind turbines capability for temporary over-production. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–7. [Google Scholar]
- Mullane, A.; O’Malley, M. The inertial response of induction-machine-based wind turbines. IEEE Trans. Power Syst. 2005, 20, 1496–1503. [Google Scholar] [CrossRef]
- Lalor, G.; Mullane, A.; O’Malley, M. Frequency control and wind turbine technologies. IEEE Trans. Power Syst. 2005, 20, 1905–1913. [Google Scholar] [CrossRef]
- Morren, J.; de Haan, S.W.H.; Kling, W.L.; Ferreira, J.A. Wind turbines emulating inertia and supporting primary frequency control. IEEE Trans. Power Syst. 2006, 21, 433–434. [Google Scholar] [CrossRef]
- Ullah, N.R.; Thiringer, T.; Karlsson, D. Temporary Primary Frequency Control Support by Variable Speed Wind Turbines— Potential and Applications. IEEE Trans. Power Syst. 2008, 23, 601–612. [Google Scholar] [CrossRef]
- Mauricio, J.M.; Marano, A.; Gomez-Exposito, A.; Ramos, J.L.M. Frequency Regulation Contribution Through Variable-Speed Wind Energy Conversion Systems. IEEE Trans. Power Syst. 2009, 24, 173–180. [Google Scholar] [CrossRef]
- Loukarakis, E.; Margaris, I.; Moutis, P. Frequency control support and participation methods provided by wind generation. In Proceedings of the 2009 IEEE Electrical Power & Energy Conference (EPEC), Montreal, QC, Canada, 22–23 October 2009; pp. 1–6. [Google Scholar]
- Akbari, M.; Madani, S.M. Participation of DFIG based wind turbines in improving short term frequency regulation. In Proceedings of the 2010 18th Iranian Conference on Electrical Engineering, Isfahan, Iran, 11–13 May 2010; pp. 874–879. [Google Scholar]
- Tarnowski, G.C.; Kjær, P.C.; Dalsgaard, S.; Nyborg, A. Regulation and frequency response service capability of modern wind power plants. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
- Morren, J.; Pierik, J.; de Haan, S.W.H. Inertial response of variable speed wind turbines. Electr. Power Syst. Res. 2006, 76, 980–987. [Google Scholar] [CrossRef]
- Tarnowski, C.G. Wind Turbine Providing Grid Support. Patent WO2011000531A2, 6 January 2011. [Google Scholar]
- Ortiz, C.; Cruz, A.L.; Carrasco Solís, J.M.; Diez, E.G.; Franquelo, L.G. System for Using Energy Stored in the Mechanical Inertia of the Rotor of a Wind Turbine. Patent WO2003023224A1, 3 June 2003. [Google Scholar]
- Buendia, J. Wind Turbine Inertia Control System. Patent EP2918824A1, 16 September 2015. [Google Scholar]
- Burra, R.K.; Delmerico, R.W.; Bose, S.; Chandrashekhara, D.K. Multi-Use Energy Storage for Renewable Sources. U.S. Patent 20110074151A1, 31 March 2011. [Google Scholar]
- Arani, M.F.M.; Mohamed, Y.A.I. Dynamic Droop Control for Wind Turbines Participating in Primary Frequency Regulation in Microgrids. IEEE Trans. Smart Grid 2018, 9, 5742–5751. [Google Scholar] [CrossRef]
- Ravanji, M.H.; Cañizares, C.A.; Parniani, M. Modeling and Control of Variable Speed Wind Turbine Generators for Frequency Regulation. IEEE Trans. Sustain. Energy 2020, 11, 916–927. [Google Scholar] [CrossRef]
- Binbing, W.; Abuduwayiti, X.; Yuxi, C.; Yizhi, T. RoCoF Droop Control of PMSG-Based Wind Turbines for System Inertia Response Rapidly. IEEE Access 2020, 8, 181154–181162. [Google Scholar] [CrossRef]
- Ochoa, D.; Martinez, S. Fast-Frequency Response Provided by DFIG-Wind Turbines and its Impact on the Grid. IEEE Trans. Power Syst. 2017, 32, 4002–4011. [Google Scholar] [CrossRef]
- Yang, D.; Kim, J.; Kang, Y.C.; Muljadi, E.; Zhang, N.; Hong, J.; Song, S.H.; Zheng, T. Temporary frequency support of a DFIG for high wind power penetration. IEEE Trans. Power Syst. 2018, 33, 3428–3437. [Google Scholar] [CrossRef]
- Wang, S.; Tomsovic, K. Fast Frequency Support From Wind Turbine Generators With Auxiliary Dynamic Demand Control. IEEE Trans. Power Syst. 2019, 34, 3340–3348. [Google Scholar] [CrossRef]
- Hafiz, F.; Abdennour, A. Optimal use of kinetic energy for the inertial support from variable speed wind turbines. Renew. Energy 2015, 80, 629–643. [Google Scholar] [CrossRef]
- Kang, M.; Muljadi, E.; Hur, K.; Kang, Y.C. Stable adaptive inertial control of a doubly-fed induction generator. IEEE Trans. Smart Grid 2016, 7, 2971–2979. [Google Scholar] [CrossRef]
- Kang, M.; Kim, K.; Muljadi, E.; Park, J.W.; Kang, Y.C. Frequency control support of a doubly-fed induction generator based on the torque limit. IEEE Trans. Power Syst. 2016, 31, 4574–4583. [Google Scholar] [CrossRef]
- Xu, G.; Xu, L. Improved use of wind turbine kinetic energy for system frequency support. IET Renew. Power Gener. 2017, 11, 1094–1100. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Yao, W.; Yan, C.; Wen, J.; Cheng, S. Two-Stage Variable Proportion Coefficient Based Frequency Support of Grid-Connected DFIG-WTs. IEEE Trans. Power Syst. 2020, 35, 962–974. [Google Scholar] [CrossRef]
- Miao, L.; Wen, J.; Xie, H.; Yue, C.; Lee, W.-J. Coordinate control strategy of wind turbine generator and energy storage equipment for frequency support. IEEE Trans. Ind. Appl. 2015, 51, 2732–2742. [Google Scholar] [CrossRef]
Item | Values | Units |
---|---|---|
Nominal Stator Voltage | 2.3 | kV |
Nominal Apparent Power | 5.5 | MVA |
Nominal Active Power | 5.0 | MW |
Magnetizing Reactance | 2.9 | p.u. |
Stator Leakage Reactance | 0.18 | p.u. |
Rotor Resistance | 0.016 | p.u. |
Rotor Leakage Reactance | 0.16 | p.u. |
Stator Resistance | 0.023 | p.u. |
Inertia Constant | 5.0 | S |
Stable Operating Range of ωr | 0.70–1.25 | p.u. |
Rated, Cut-in, and Cut-out Speeds | 11, 4, and 25 | m/s |
Based value of rotor speed | 235.62 | rad/s |
Based value of torque | 21.78 | kNm |
Scheme | Case 1 | Case 2 | |
---|---|---|---|
Frequency nadir (Hz) | MPPT | 59.042 | 58.957 |
Conventional | 59.252 | 59.355 | |
Proposed | 59.252 | 59.355 | |
Second frequency drop (Hz) | MPPT | - | - |
Conventional | 59.515 | 59.428 | |
Proposed | 59.582 | 59.502 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Yang, D.; Huang, J.; Zhang, X.; Hua, L. Fast Stepwise Inertial Control Scheme of a DFIG for Reducing Second Frequency Drop. Appl. Sci. 2021, 11, 8259. https://doi.org/10.3390/app11178259
Xu Y, Yang D, Huang J, Zhang X, Hua L. Fast Stepwise Inertial Control Scheme of a DFIG for Reducing Second Frequency Drop. Applied Sciences. 2021; 11(17):8259. https://doi.org/10.3390/app11178259
Chicago/Turabian StyleXu, Yien, Dejian Yang, Jiejie Huang, Xinsong Zhang, and Liang Hua. 2021. "Fast Stepwise Inertial Control Scheme of a DFIG for Reducing Second Frequency Drop" Applied Sciences 11, no. 17: 8259. https://doi.org/10.3390/app11178259
APA StyleXu, Y., Yang, D., Huang, J., Zhang, X., & Hua, L. (2021). Fast Stepwise Inertial Control Scheme of a DFIG for Reducing Second Frequency Drop. Applied Sciences, 11(17), 8259. https://doi.org/10.3390/app11178259