Reducing Forecast Errors of a Regional Climate Model Using Adaptive Filters
Abstract
:1. Introduction
2. Seasonal Climate Forecasts
3. Forecast Error Reduction by Adaptive Filtering
4. Proposed Framework for Climate Forecast Error Reduction
4.1. Data Grid Adjustment
4.2. Climate Series Clustering
4.3. Recursive Least Squares Adaptive Filters
4.4. Performance Evaluation
Effectiveness in Reducing RCM Forecast Deviations
5. Experiments
5.1. Climate Variables
5.2. Learning Clusters
5.3. Adaptive Filter Configuration
5.4. Capturing Spatial and Temporal Variability
5.5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology; Academic Press: Cambridge, MA, USA, 2012; Volume 88. [Google Scholar]
- Castro, C.L.; Pielke, R.A.; Leoncini, G. Dynamical downscaling: Assessment of value retained and added using the Regional Atmopsheric Modeling System (RAMS). J. Geophys. Res. Atmos. 2005, 110, 1–21. [Google Scholar] [CrossRef]
- Laprise, R.; de Elía, R.; Caya, D.; Biner, S.; Lucas-Picher, P.; Diaconescu, E.; Leduc, M.; Alexandru, A.; Separovic, L. Challenging some tenets of Regional Climate Modelling. Meteorol. Atmos. Phys. 2008, 100, 3–22. [Google Scholar] [CrossRef]
- Chou, S.C.; Bustamante, J.F.; Gomes, J. Evaluation of Eta Model seasonal precipitation forecasts over South America. Nonlinear Process. Geophys. 2005, 12, 537–555. [Google Scholar] [CrossRef] [Green Version]
- Black, T.L. The new NMC mesoscale Eta model: Description and forecast examples. Weather. Forecast. 1994, 9, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Mesinger, F.; Janjić, Z.I.; Ničković, S.; Gavrilov, D.; Deaven, D.G. The step-mountain coordinate: Model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon. Weather. Rev. 1988, 116, 1493–1518. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.C. Modelo regional Eta. Climanálise 1996, 1, 27–29. Available online: http://climanalise.cptec.inpe.br/~rclimanl/boletim/cliesp10a/27.html (accessed on 27 May 2021). (In Portuguese).
- Mesinger, F.; Chou, S.C.; Gomes, J.L.; Jovic, D.; Bastos, P.; Bustamante, J.F.; Lazic, L.; Lyra, A.A.; Morelli, S.; Ristic, I.; et al. An upgraded version of the Eta model. Meteorol. Atmos. Phys. 2012, 116, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Mesinger, F.; Veljovic, K.; Chou, S.C.; Gomes, J.; Lyra, A. The Eta model: Design, use, and added value. In Topics in Climate Modeling; InTech: London, UK, 2016. [Google Scholar]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Jakob Themeßl, M.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Berg, P.; Feldmann, H.; Panitz, H.J. Bias correction of high resolution regional climate model data. J. Hydrol. 2012, 448, 80–92. [Google Scholar] [CrossRef]
- Maraun, D. Bias correcting climate change simulations—A critical review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Tschöke, G.V.; Kruk, N.S.; de Queiroz, P.I.B.; Chou, S.C.; de Sousa Junior, W.C. Comparison of two bias correction methods for precipitation simulated with a regional climate model. Theor. Appl. Climatol. 2017, 127, 841–852. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Maurer, E.P.; Abatzoglou, J.T.; Hegewisch, K.C. Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeorol. 2015, 16, 2421–2442. [Google Scholar] [CrossRef]
- Nguyen, H.; Mehrotra, R.; Sharma, A. Correcting for systematic biases in GCM simulations in the frequency domain. J. Hydrol. 2016, 538, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Mehrotra, R.; Sharma, A. Correcting systematic biases across multiple atmospheric variables in the frequency domain. Clim. Dyn. 2019, 52, 1283–1298. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A multivariate quantile-matching bias correction approach with auto-and cross-dependence across multiple time scales: Implications for downscaling. J. Clim. 2016, 29, 3519–3539. [Google Scholar] [CrossRef]
- Johnson, F.; Sharma, A. A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Haerter, J.; Hagemann, S.; Moseley, C.; Piani, C. Climate model bias correction and the role of timescales. Hydrol. Earth Syst. Sci. 2011, 15, 1065–1079. [Google Scholar] [CrossRef] [Green Version]
- Kusumastuti, C.; Jiang, Z.; Mehrotra, R.; Sharma, A. A signal processing approach to correct systematic bias in trend and variability in climate model simulations. Geophys. Res. Lett. 2021, 48, e2021GL092953. [Google Scholar] [CrossRef]
- Kistler, R.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Kalnay, E.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP–NCAR 50–year reanalysis: Monthly means CD–ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–267. [Google Scholar] [CrossRef]
- Diniz, P.S. Introduction to Adaptive Filtering. In Adaptive Filtering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–8. [Google Scholar]
- Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics New York; Springer: Berlin/Heidelberg, Germany, 2001; Volume 1. [Google Scholar]
- Freitas, A.R.; Tcheou, M.P.; Lovisolo, L.; Chou, S.C. Filtragem adaptativa para a redução de desvios em séries temporais de previsão numérica climática. In Proceedings of the Simpósio Brasileiro de Telecomunicações e Processamento de Sinais, Juiz de Fora, Brazil, 1 September 2015. (In Portuguese). [Google Scholar]
- Chou, S.C.; Dereczynski, C.; Gomes, J.L.; Pesquero, J.F.; AVILA, A.; Resende, N.C.; Alves, L.F.; Ruiz-Cardenas, R.; Souza, C.R.D.; Bustamante, J.F.F. Ten-year seasonal climate reforecasts over South America using the Eta Regional Climate Model. An. Acad. Bras. Ciênc. 2020, 92. [Google Scholar] [CrossRef] [PubMed]
- Davies, T. Lateral boundary conditions for limited area models. Q. J. R. Meteorol. Soc. 2014, 140, 185–196. [Google Scholar] [CrossRef]
- Diniz, P.S.R.; Da Silva, E.A.B.; Netto, S.L. Digital Signal Processing: System Analysis and Design; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Lovisolo, L.; Da Silva, E. Uniform distribution of points on a hyper-sphere with applications to vector bit-plane encoding. IEE Proc. Vision Image Signal Process. 2001, 148, 187–193. [Google Scholar] [CrossRef]
- Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Philip, S.Y.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.; Pearce, R. Large-Scale Dynamical Processes in the Atmosphere; Academic Press: Cambridge, MA, USA, 1983. [Google Scholar]
NMSE | |||
---|---|---|---|
NMSE | 1 | 0.63 | 0.62 |
0.63 | 1 | 0.51 | |
0.62 | 0.51 | 1 |
NMSE | |||||||
---|---|---|---|---|---|---|---|
Pressure Level | N | MER(%) | MER(%) | MER(%) | |||
250 hPa | 4 | 93.14 | 9.60 | 81.14 | 12.42 | 91.78 | 7.03 |
8 | 90.72 | 10.71 | 81.46 | 12.16 | 89.05 | 8.67 | |
16 | 87.24 | 14.63 | 75.16 | 17.47 | 85.37 | 9.03 | |
32 | 83.01 | 17.84 | 73.25 | 17.10 | 77.41 | 9.12 | |
500 hPa | 4 | 99.42 | 1.33 | 88.12 | 9.36 | 97.23 | 1.22 |
8 | 98.76 | 2.09 | 84.66 | 11.64 | 94.09 | 2.53 | |
16 | 98.10 | 3.12 | 84.10 | 11.13 | 91.18 | 3.58 | |
32 | 94.88 | 8.29 | 80.83 | 13.26 | 85.15 | 5.08 |
Pressure Level | Climate Variable | NMSE | ||
---|---|---|---|---|
250 hPa | Meridional wind | 99 | 90 | 97 |
Zonal wind | 93 | 78 | 92 | |
Geopotential height | 88 | 75 | 86 | |
500 hPa | Meridional wind | 100 | 83 | 97 |
Zonal wind | 99 | 89 | 98 | |
Geopotential height | 99 | 92 | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tcheou, M.P.; Lovisolo, L.; Freitas, A.R.; Chou, S.C. Reducing Forecast Errors of a Regional Climate Model Using Adaptive Filters. Appl. Sci. 2021, 11, 8001. https://doi.org/10.3390/app11178001
Tcheou MP, Lovisolo L, Freitas AR, Chou SC. Reducing Forecast Errors of a Regional Climate Model Using Adaptive Filters. Applied Sciences. 2021; 11(17):8001. https://doi.org/10.3390/app11178001
Chicago/Turabian StyleTcheou, Michel Pompeu, Lisandro Lovisolo, Alexandre Ribeiro Freitas, and Sin Chan Chou. 2021. "Reducing Forecast Errors of a Regional Climate Model Using Adaptive Filters" Applied Sciences 11, no. 17: 8001. https://doi.org/10.3390/app11178001
APA StyleTcheou, M. P., Lovisolo, L., Freitas, A. R., & Chou, S. C. (2021). Reducing Forecast Errors of a Regional Climate Model Using Adaptive Filters. Applied Sciences, 11(17), 8001. https://doi.org/10.3390/app11178001