Comparative Study between Healthy Young and Elderly Subjects: Higher-Order Statistical Parameters as Indices of Vocal Aging and Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Gender Analysis Methods
2.3. Praat and TF32 Software: Setting
2.4. HOS Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistics Korea. Available online: http://kostat.go.kr/portal/korea/kor_nw/1/1/index.board?bmode=read&aSeq=385322 (accessed on 6 June 2021).
- Kahane, J.C. Anatomic and physiologic changes in the aging peripheral speech mechanism. In Aging: Communications Processes and Disorders; Beasley, D.S., Davis, A., Eds.; Grune and Stratton: New York, NY, USA, 1981; pp. 21–45. [Google Scholar]
- Lee, S.Y. The Overall Speaking Rate and Articulation Rate of Normal Elderly People. Graduate Program in Speech and Language Pathology. Master’s Thesis, Yonsei University, Seoul, Korea, 2011. [Google Scholar]
- KOFWST. Gendered Innovations. Available online: http://gister.re.kr/#!/main (accessed on 2 March 2017).
- Lee, J.Y. Gender analysis in elderly speech signal processing. J. Digital Converg. 2018, 16, 351–356. [Google Scholar] [CrossRef]
- Lee, J.Y. Elderly speech signal processing: A systematic review for analysis of gender innovation. J. Converg. Inf. Technol. 2019, 9, 148–154. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, H.S. Gendered innovation for algorithm through case studies. J. Digital Converg. 2018, 16, 459–466. [Google Scholar] [CrossRef]
- Song, Y.-K. Prevalence of Voice Disorders and Characteristics of Korean Voice Handicap Index in the Elderly. Phon. Speech Sci. 2012, 4, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Kwon, S.I. Elderly speech analysis for improving elderly speech recognition. J. Korean Inst. Inf. Sci. Eng. 2014, 32, 16–20. [Google Scholar]
- Jeong, J.H.; Jang, J.H.; Moon, M. Development of AI Speaker with Active Interaction Customized for the Elderly. J. Korean Inst. Electron. Commun. Sci. 2020, 15, 1223–1230. [Google Scholar]
- Braun, A. Fundamental Frequency—How Speaker-specific It Is? In Studies in Forensic Phonetics; Braun, A., Koster, J.P., Eds.; BEIPHOL: Berlin, Germany, 1995; pp. 9–23. [Google Scholar]
- Mennen, I.; Schaeffler, F.; Docherty, G. Cross-language differences in fundamental frequency range: A comparison of English and German. J. Acoust. Soc. Am. 2012, 131, 2249–2260. [Google Scholar] [CrossRef] [Green Version]
- Mezzedimi, C.; Di Francesco, M.; Livi, W.; Spinosi, M.C.; De Felice, C. Objective Evaluation of Presbyphonia: Spectroacoustic Study on 142 Patients with Praat. J. Voice 2017, 31, 257.e25–257.e32. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, A.; Yokonishi, H.; Imagawa, H.; Sakakibara, K.-I.; Nito, T.; Tayama, N.; Yamasoba, T. Age- and Gender-Related Difference of Vocal Fold Vibration and Glottal Configuration in Normal Speakers: Analysis With Glottal Area Waveform. J. Voice 2014, 28, 525–531. [Google Scholar] [CrossRef]
- Yamauchi, A.; Imagawa, H.; Yokonishi, H.; Nito, T.; Yamasoba, T.; Goto, T.; Takano, S.; Sakakibara, K.-I.; Tayama, N. Evaluation of Vocal Fold Vibration With an Assessment Form for High-Speed Digital Imaging: Comparative Study between Healthy Young and Elderly Subjects. J. Voice 2012, 26, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Vellasco, M.M.; Cataldo, E. Evolving Spiking Neural Networks for Recognition of Aged Voices. J. Voice 2017, 31, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Ferrand, C.T. Harmonics-to-Noise Ratio. J. Voice 2002, 16, 480–487. [Google Scholar] [CrossRef]
- Ambreen, S.; Bashir, N.; Tarar, S.A.; Kausar, R. Acoustic Analysis of Normal Voice Patterns in Pakistani Adults. J. Voice 2019, 33, 124.e49–124.e58. [Google Scholar] [CrossRef]
- Ahmadi, A.; Hosseinifar, S.; Faham, M.; Shahramnia, M.M.; Ebadi, A.; Etter, N.M.; Shiani, A.; Dehghan, M. Translation, Validity, and Reliability of the Persian Version of the Aging Voice Index. J. Voice 2021, 35, 327.e13–327.e21. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.T.; Master, S.; Andreoni, S.; Pontes, P.A.D.L.; Ramos, L.R. Acoustic and Long-Term Average Spectrum Measures to Detect Vocal Aging in Women. J. Voice 2011, 25, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Maslan, J.; Leng, X.; Rees, C.; Blalock, D.; Butler, S.G. Maximum Phonation Time in Healthy Older Adults. J. Voice 2011, 25, 709–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaeffer, N.; Knudsen, M.; Small, A. Multidimensional Voice Data on Participants With Perceptually Normal Voices From Ages 60 to 80: A Preliminary Acoustic Reference for the Elderly Population. J. Voice 2015, 29, 631–637. [Google Scholar] [CrossRef]
- Linville, S.E. Source Characteristics of Aged Voice Assessed from Long-Term Average Spectra. J. Voice 2002, 16, 472–479. [Google Scholar] [CrossRef]
- De Machado, F.C.M.; Lessa, M.M.; Cielo, C.A.; Barbosa, L.H.F. Spectrographic Acoustic Vocal Characteristics of Elderly Women Engaged in Aerobics. J. Voice 2016, 30, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Linville, S.E.; Rens, J. Vocal Tract Resonance Analysis of Aging Voice Using Long-Term Average Spectra. J. Voice 2001, 15, 323–330. [Google Scholar] [CrossRef]
- William, J.B.; Manfred, P. Saarbrucken Voice Database; Institute of Phonetics, University of Saarland: Saarbrücken, Germany, 2007; Available online: http://www.stimmdatenbank.coli.uni-saarland.de/ (accessed on 13 May 2018).
- Ko, H.-J.; Woo, M.-R.; Choi, Y. Comparisons of voice quality parameter values measured with MDVP, Praat, and TF32. Phon. Speech Sci. 2020, 12, 73–83. [Google Scholar] [CrossRef]
- Milenkovic, P.H. TF32 and Cspeech Home Pare. Available online: http://userpages.chorus.net/cspeech/ (accessed on 2 March 2001).
- Nemer, E.; Goubran, R.; Mahmoud, S. Robust voice activity detection using higher-order statistics in the LPC residual domain. IEEE Trans. Speech Audio Process. 2001, 9, 217–231. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Jeong, S.; Choi, H.-S.; Hahn, M. Objective Pathological Voice Quality Assessment Based on HOS Features. IEICE Trans. Inf. Syst. 2008, E91.D, 2888–2891. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-Y.; Jeong, S.; Hahn, M. Pathological Voice Detection Using Efficient Combination of Heterogeneous Features. IEICE Trans. Inf. Syst. 2008, E91.D, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Hahn, M. Automatic Assessment of Pathological Voice Quality Using Higher-Order Statistics in the LPC Residual Domain. EURASIP J. Adv. Signal Process. 2010, 2009, 748207. [Google Scholar] [CrossRef] [Green Version]
- Kwak, S.G.; Park, S.-H. Normality Test in Clinical Research. J. Rheum. Dis. 2019, 26, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Harnsberger, J.D.; Shrivastav, R.; Brown, W.; Rothman, H.; Hollien, H. Speaking Rate and Fundamental Frequency as Speech Cues to Perceived Age. J. Voice 2008, 22, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Hollien, H.; Shipp, T. Speaking Fundamental Frequency and Chronologic Age in Males. J. Speech Hear. Res. 1972, 15, 155–159. [Google Scholar] [CrossRef]
- Goy, H.; Fernandes, D.N.; Pichora-Fuller, M.K.; van Lieshout, P. Normative Voice Data for Younger and Older Adults. J. Voice 2013, 27, 545–555. [Google Scholar] [CrossRef]
Men | Women | ||||
---|---|---|---|---|---|
Young | Elderly | Young | Elderly | ||
Fundamental | Arithmetic mean | 121.64 | 142.02 | 216.93 | 201.06 |
frequency (Hz) | 95% CI for the mean | 112.91–130.09 | 133.73–150.31 | 207.19–226.02 | 191.88–210.40 |
SD | 4.55 | 4.28 | 4.85 | 4.76 | |
p value | 0.002 * | 0.038 * | |||
Jitter local (%) | Arithmetic median | 0.36 | 0.51 | 0.32 | 0.44 |
95% CI for the median | 0.28–0.40 | 0.41–0.75 | 0.30–0.41 | 0.34–0.56 | |
SD | 0.04 | 0.10 | 0.03 | 0.05 | |
p value | 0.002 * | 0.028 * | |||
Jitter local abs (us) | Arithmetic median | 29.60 | 39.61 | 15.80 | 22.10 |
95% CI for the median | 24.61–35.72 | 28.77–56.78 | 14.06–20.16 | 16.26–28.58 | |
SD | 2.95 | 8.20 | 1.36 | 3.17 | |
p value | 0.04 * | 0.017 * | |||
Jitter rap (%) | Arithmetic median | 0.16 | 0.27 | 0.18 | 0.22 |
95% CI for the median | 0.12–0.23 | 0.19–0.31 | 0.17–0.23 | 0.17–0.28 | |
SD | 0.03 | 0.04 | 0.02 | 0.02 | |
p value | 0.01 * | 0.279 | |||
Jitter ppq5 (%) | Arithmetic median | 0.20 | 0.30 | 0.19 | 0.24 |
95% CI for the median | 0.16–0.24 | 0.21–0.42 | 0.16–0.24 | 0.17–0.29 | |
SD | 0.02 | 0.05 | 0.02 | 0.02 | |
p value | 0.008 * | 0.124 | |||
Shimmer local (%) | Arithmetic median | 2.69 | 4.91 | 2.69 | 2.65 |
95% CI for the median | 2.13–2.98 | 3.23–6.96 | 2.39–3.26 | 2.09–3.00 | |
SD | 0.24 | 1.03 | 0.25 | 0.23 | |
p value | 0.002 * | 0.969 | |||
Shimmer local | Arithmetic median | 0.23 | 0.43 | 0.23 | 0.25 |
(dB) | 95% CI for the median | 0.18–0.27 | 0.28–0.63 | 0.20–0.28 | 0.18–0.28 |
SD | 0.02 | 0.09 | 0.02 | 0.02 | |
p value | 0.001 * | 0.617 | |||
Shimmer apq3 (%) | Arithmetic median | 1.29 | 2.64 | 1.42 | 1.32 |
95% CI for the median | 1.00–1.57 | 1.43–3.71 | 1.28–1.72 | 1.06–1.48 | |
SD | 0.16 | 0.60 | 0.11 | 0.12 | |
p value | 0.016 * | 0.596 | |||
Shimmer apq5 (%) | Arithmetic median | 1.48 | 3.02 | 1.63 | 1.56 |
95% CI for the median | 1.29–1.77 | 2.07–4.03 | 1.50–2.05 | 1.34–1.74 | |
SD | 0.13 | 0.58 | 0.15 | 0.09 | |
p value | 0.001 * | 0.961 | |||
Mean N/H | Arithmetic median | 0.008 | 0.018 | 0.005 | 0.01 |
95% CI for the median | 0.006–0.0111 | 0.008–0.041 | 0.004–0.007 | 0.006–0.011 | |
SD | 0.001 | 0.009 | 0.001 | 0.001 | |
p value | 0.008 * | 0.106 | |||
Mean H/N (dB) | Arithmetic mean | 22.80 | 19.50 | 23.65 | 23.26 |
95% CI for the mean | 21.73–23.77 | 17.68–21.19 | 22.49–24.79 | 22.05–24.39 | |
SD | 0.51 | 0.88 | 0.58 | 0.59 | |
p value | 0.002 * | 0.102 |
Men | Women | ||||
---|---|---|---|---|---|
Young | Elderly | Young | Elderly | ||
Fundamental | Arithmetic mean | 125.32 | 142.23 | 213.75 | 199.06 |
frequency (Hz) | 95% CI for the mean | 116.24–135.11 | 134.41–150.68 | 202.65–224.42 | 188.23–209.14 |
SD | 4.74 | 4.17 | 5.42 | 5.22 | |
p value | 0.004 * | 0.008 * | |||
Ppd (%) | Arithmetic median | 8.06 | 6.87 | 4.63 | 4.88 |
95% CI for the median | 7.39–8.61 | 6.58–7.64 | 4.53–5.01 | 4.60–5.24 | |
SD | 0.32 | 0.28 | 0.17 | 0.16 | |
p value | 0.011 * | 0.048 * | |||
Jitter (%) | Arithmetic median | 0.34 | 0.53 | 0.31 | 0.42 |
95% CI for the median | 0.28–0.43 | 0.37–0.71 | 0.28–0.41 | 0.32–0.56 | |
SD | 0.03 | 0.09 | 0.03 | 0.05 | |
p value | 0.001 * | 0.018 * | |||
Shimmer (%) | Arithmetic median | 2.17 | 3.54 | 1.91 | 2.03 |
95% CI for the median | 1.96–2.46 | 2.54–5.07 | 1.61–2.31 | 1.72–2.50 | |
SD | 0.14 | 0.79 | 0.15 | 0.20 | |
p value | 0.001 * | 0.765 | |||
SNR (dB) | Arithmetic mean | 23.89 | 20.05 | 24.13 | 23.42 |
95% CI for the mean | 22.31–25.33 | 18.31–21.81 | 22.76–25.40 | 22.29–24.71 | |
SD | 0.76 | 0.91 | 0.65 | 0.62 | |
p value | 0.001 * | 0.233 | |||
Trk | Arithmetic median | 90.00 | 146.00 | 34.00 | 65.00 |
95% CI for the median | 60.00–135.00 | 121.00–200.00 | 21.00–43.00 | 35.00–144.00 | |
SD | 23.62 | 17.20 | 7.01 | 28.22 | |
p value | 0.044 * | 0 * | |||
Err | Arithmetic median | 0.00 | 5.00 | 0.00 | 1.00 |
95% CI for the median | 0.00 | 0.00–0.16 | 0.00 | 0.00–6.00 | |
SD | 0.03 | 3.93 | 0.09 | 1.65 | |
p value | 0 * | 0.004 * |
Men | Women | ||||
---|---|---|---|---|---|
Young | Elderly | Young | Elderly | ||
The normalized | Arithmetic mean | −0.133 | −0.141 | −0.080 | 0.182 |
skewness | 95% CI for the mean | −0.238–−0.026 | −0.205–0.143 | −0.340–0.182 | −0.046–0.384 |
SD | 0.054 | 0.092 | 0.135 | 0.110 | |
p value | 0.65 | 0.005 * | |||
The normalized | Arithmetic median | 2.976 | 2.483 | 2.722 | 2.539 |
kurtosis | 95% CI for the median | 2.846–3.333 | 2.275–2.601 | 2.461–2.989 | 2.311–2.751 |
SD | 0.156 | 0.092 | 0.121 | 0.147 | |
p value | 0.011 * | 0.494 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.-J.; Lee, J.-Y. Comparative Study between Healthy Young and Elderly Subjects: Higher-Order Statistical Parameters as Indices of Vocal Aging and Sex. Appl. Sci. 2021, 11, 6966. https://doi.org/10.3390/app11156966
Choi H-J, Lee J-Y. Comparative Study between Healthy Young and Elderly Subjects: Higher-Order Statistical Parameters as Indices of Vocal Aging and Sex. Applied Sciences. 2021; 11(15):6966. https://doi.org/10.3390/app11156966
Chicago/Turabian StyleChoi, Hee-Jin, and Ji-Yeoun Lee. 2021. "Comparative Study between Healthy Young and Elderly Subjects: Higher-Order Statistical Parameters as Indices of Vocal Aging and Sex" Applied Sciences 11, no. 15: 6966. https://doi.org/10.3390/app11156966
APA StyleChoi, H.-J., & Lee, J.-Y. (2021). Comparative Study between Healthy Young and Elderly Subjects: Higher-Order Statistical Parameters as Indices of Vocal Aging and Sex. Applied Sciences, 11(15), 6966. https://doi.org/10.3390/app11156966