A Game-Theoretic Approach for Electric Power Distribution during Power Shortage: A Case Study in Pakistan
Abstract
:1. Introduction
2. Current Conditions of the Power Sector in Pakistan
3. Bankruptcy Rules and Nash Bargaining Theory: Methods for Managing the Allocation of Resources
3.1. Classical Bankruptcy Rules
3.1.1. Proportional Rule (PRO)
3.1.2. The Constrained Equal Award (CEA) Rule
3.1.3. The Constrained Equal Losses (CEL) Rule
3.1.4. The Talmud Rule
3.1.5. The Piniles Rule
3.2. Power Allocation Using a Combination of the Asymmetric Nash Bargaining Theory and Power Bankruptcy Concept
Determination of Bargaining Weights
4. Results and Discussion
4.1. Results of the Bankruptcy Rules
4.2. Results of the Nash Bargaining Theory
4.3. Selection of the Most Appropriate Rule
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Neill, B. A problem of rights arbitration from the Talmud. Math. Soc. Sci. 1982, 2, 345–371. [Google Scholar] [CrossRef] [Green Version]
- Ansink, E.; Marchiori, C. Reallocating Water: An Application of Sequential Sharing Rules to Cyprus. SSRN Electron. J. 2011. [Google Scholar] [CrossRef] [Green Version]
- Sheikhmohammady, M.; Kilgour, D.M.; Hipel, K.W. Modeling the caspian sea negotiations. Group Decis. Negot. 2010, 19, 149–168. [Google Scholar] [CrossRef]
- Zarezadeh, M.; Mirchi, A.; Read, L.; Madani, K. Ten Bankruptcy Methods for Resolving Natural Resource Allocation conflicts. In Water Diplomacy in Action. Contingent Approaches to Managing Complex Water Problems; Islam, S., Madani, K., Eds.; Anthem Press: London, UK, 2012; pp. 37–50. [Google Scholar]
- Jarkeh, M.R.; Mianabadi, A.; Mianabadi, H. Developing new scenarios for water allocation negotiations: A case study of the Euphrates River Basin. Proc. Int. Assoc. Hydrol. Sci. 2016, 374, 9–15. [Google Scholar] [CrossRef]
- Ansink, E.; Marchiori, C. Reallocating water: An application of sequential sharing rules to Cyprus. Water Econ. Policy 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Gallastegui, C.M.; Inarra, R.; Prelezzo, R. Bankruptcy of Fishing Resources: The Northern European Anglerfish Fishery. Mar. Resour. Econ. 2002, 17, 291–307. [Google Scholar] [CrossRef]
- Zarezadeh, M.; Madani, K.; Morid, S. Resolving conflicts over trans-boundary rivers using bankruptcy methods. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 13855–13887. [Google Scholar]
- Mianabadi, H.; Sheikhmohammady, M. Application of the Ordered Weighted Averaging (OWA) method to the Caspian Sea conflict. Stoch. Environ. Res. Risk Assess. 2014, 28, 1359–1372. [Google Scholar] [CrossRef]
- Grundel, S.; Borm, P.; Hamers, H. Resource allocation games: A compromise stable extension of bankruptcy games. Math. Methods Oper. Res. 2013, 78, 149–169. [Google Scholar] [CrossRef]
- Auman, R.; Maschler, M. Game theoretic analysis of a bankruptcy problem from the Talmud. J. Econ. Theory 1985, 36, 195–213. [Google Scholar] [CrossRef]
- Alcalde, J.; del Carmen Marco-Gil, M.; Silva-Reus, J.A. The minimal overlap rule: Restrictions on mergers for creditors’ consensus. Top 2014, 22, 363–383. [Google Scholar] [CrossRef] [Green Version]
- Hendrickx, R.; Borm, P.; van Elk, R.; Quant, M. Minimal overlap rules for bankruptcy. Int. Math. Forum 2005, 2, 3001–3012. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Freire, S.; Casas-Méndez, B.; Hendrickx, R. The two-stage constrained equal awards and losses rules for multi-issue allocation situations. Top 2010, 18, 465–480. [Google Scholar] [CrossRef] [Green Version]
- Thomson, W. Lorenz rankings of rules for the adjudication of conflicting claims. Econ. Theory 2012, 50, 547–569. [Google Scholar] [CrossRef] [Green Version]
- Mianabadi, H.; Mostert, E.; Pande, S.; van de Giesen, N. Weighted Bankruptcy Rules and Transboundary Water Resources Allocation. Water Resour. Manag. 2015, 29, 2303–2321. [Google Scholar] [CrossRef] [Green Version]
- Madani, K.; Zarezadeh, M.; Morid, S. A new framework for resolving conflicts over transboundary rivers using bankruptcy methods. Hydrol. Earth Syst. Sci. 2014, 18, 3055–3068. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; He, Y.; Chen, X.; Zheng, Y. The improved bankruptcy method and its application in regional water resource allocation. J. Hydro Environ. Res. 2018, 28, 48–56. [Google Scholar] [CrossRef]
- Janjua, S.; Hassan, I. Use of bankruptcy methods for resolving interprovincial water conflicts over transboundary river: Case study of Indus River in Pakistan. River Res. Appl. 2020, 1–11. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Athari, E.; Fallah-Mehdipour, E.; Loáiciga, H.A. Real-time water allocation policies calculated with bankruptcy games and genetic programing. Water Sci. Technol. Water Supply 2018, 18, 430–449. [Google Scholar] [CrossRef]
- Degefu, D.M.; He, W. Power Allocation among Socio-Economic Sectors with Overlapping Demands during Power Shortage: A Bankruptcy Approach. In Proceedings of the 2016 4th IEEE International Conference on Smart Energy Grid Engineering, SEGE, Oshawa, ON, Canada, 21–24 August 2016; pp. 6–10. [Google Scholar]
- Kim, H.-M.; Lim, Y.; Kinoshita, T. A Fairness Comparison among Load-shedding Schemes using Bankruptcy Rules for Multiagent-based Microgrid Operation. Int. Inf. Inst. 2012, 15, 1293. [Google Scholar]
- Kim, H.M.; Kinoshita, T. A comparative study of bankruptcy rules for load-shedding scheme in agent-based microgrid operation. Commun. Comput. Inf. Sci. 2011, 151, 145–152. [Google Scholar]
- Kim, H.M.; Kinoshita, T.; Lim, Y.; Kim, T.H. A bankruptcy problem approach to load-shedding in multiagent-based microgrid operation. Sensors 2010, 10, 8888–8898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.; Park, J.; Kim, H.M.; Kinoshita, T. A Bargaining approach to optimizing load shedding in islanded microgrid operation. IETE Tech. Rev. Inst. Electron. Telecommun. Eng. India 2013, 30, 483–489. [Google Scholar]
- Vassaki, S.; Panagopoulos, A.D.; Constantinou, P. Bandwidth Allocation in Wireless Access Networks: Bankruptcy Game vs Cooperative Game. In Proceedings of the 2009 International Conference on Ultra Modern Telecommunications Workshops, Saint Petersburg, Russia, 30 April 2009; pp. 6–9. [Google Scholar]
- Weaver, W.W.; Krein, P.T. Game-theoretic control of small-scale power systems. IEEE Trans. Power Deliv. 2009, 24, 1560–1567. [Google Scholar] [CrossRef]
- Nash, J. Two-person cooperative games. Econometrica 1953, 21, 128–140. [Google Scholar] [CrossRef]
- Nash, Z. The bargaining problem. Econometrica 1950, 18, 155–162. [Google Scholar] [CrossRef]
- Safari, N.; Zarghami, M.; Szidarovszky, F. Nash bargaining and leader-follower models in water allocation: Application to the Zarrinehrud River basin, Iran. Appl. Math. Model. 2014, 38, 1959–1968. [Google Scholar] [CrossRef]
- Houba, H. Asymmetric Nash Solutions in the River Sharing Problem; Tinbergen Institute: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Sgobbi, A. A Stochastic Multiple Players Multi-Issues Bargaining Model for the Piave River Basin. Strateg. Behav. Environ. 2011, 1, 119–150. [Google Scholar] [CrossRef] [Green Version]
- Degefu, D.M.; He, W. Allocating Water under Bankruptcy Scenario. Water Resour. Manag. 2016, 30, 3949–3964. [Google Scholar] [CrossRef]
- Qin, J.; Fu, X.; Peng, S.; Xu, Y.; Huang, J.; Huang, S. Asymmetric Bargaining Model for Water Resource Allocation over Transboundary Rivers. Int. J. Environ. Res. Public Health 2019, 16, 1733. [Google Scholar] [CrossRef] [Green Version]
- Khalil, H.B.; Abas, N. Smart grids: An Approach to Integrate the Renewable Energies and Efficiently Manage the Energy System of Pakistan. In Proceedings of the 5th International Conference on Computing Communication Networking Technologies, ICCCNT, Hefei, China, 11–13 July 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- State Bank of Pakistan. Annual Report on Energy; State Bank of Pakistan: Islamabad, Pakistan, 2018. [Google Scholar]
- Haroon, G.S. Electricity Subsidies Welfare Analysis in PAKISTAN; Pakistan Institute of Development Economics: Islamabad, Pakistan, 2019. [Google Scholar]
- Ansink, E.; Weikard, H.-P. Sequential sharing rules for river sharing problems. Soc. Choice Welf. 2012, 38, 187–210. [Google Scholar] [CrossRef] [Green Version]
- Bosmans, K.; Lauwers, L. Lorenz comparisons of nine rules for the adjudication of conflicting claims. Int. J. Game Theory 2011, 40, 791–807. [Google Scholar] [CrossRef] [Green Version]
- Harsanyi, J.C. A simplified bargaining model for the n-person cooperative game. Pap. Game Theory 1982, 4, 44–70. [Google Scholar]
- Kalai, E. Nonsymmetric Nash solutions and replications of 2-person bargaining. Int. J. Game Theory 1977, 6, 129–133. [Google Scholar] [CrossRef]
Province | Peak Power Demand (MW) | Peak Power Demand (Total) (MW) | Peak Power Generation (MW) | Total Deficit (MW) |
---|---|---|---|---|
Punjab | 11,347 | 18,306 | 14,263 | 4043 |
Sindh | 3943 | |||
KPK | 2054 | |||
Baluchistan | 962 |
Province | Punjab | Sindh | Khyber Pakhtunkhwa (KPK) | Baluchistan | Total |
---|---|---|---|---|---|
Length of transmission lines (km) | 28,921 | 8364 | 6954 | 7470 | 51,709 |
Population (in millions) | 110 | 48 | 30 | 12 | 200 |
Province | PRO (MW) | CEA (MW) | CEL (MW) | Talmud (MW) | Piniles (MW) |
---|---|---|---|---|---|
Punjab | 8840 | 7304 | 10,321 | 10,079 | 7304 |
Sindh | 3027 | 3943 | 2917 | 2675.5 | 3943 |
KPK | 1600 | 2054 | 1025 | 1027 | 2054 |
Baluchistan | 751 | 962 | 0 | 481 | 962 |
Province | Power Allocation Using Homogeneous Weights (MW) | Power Allocation Using Heterogeneous Weights (Based on the Length of Transmission Lines) (MW) | Power Allocation Using Heterogeneous Weights (Based on the Population of the Province) (MW) |
---|---|---|---|
Punjab | 8771 | 9913 | 9621 |
Sindh | 3438 | 2717 | 2983 |
KPK | 2054 | 1633 | 1658 |
Baluchistan | 962 | 962 | 962 |
Riparian | PRO (%) | CEA (%) | CEL (%) | Talmud (%) | Piniles (%) | Nash Bargaining (Homogenous Weights) (%) | Nash Bargaining Heterogenous Weights (Based on the Length of Transmission Lines) (%) | Nash Bargaining Heterogenous Weights (Based on the Population of the Province) (%) |
---|---|---|---|---|---|---|---|---|
Punjab | 77 | 64 | 74 | 89 | 64 | 77 | 87 | 85 |
Sindh | 77 | 100 | 50 | 68 | 74 | 87 | 69 | 75 |
KPK | 77 | 100 | 50 | 50 | 100 | 100 | 79 | 80 |
Baluchistan | 77 | 100 | 0 | 50 | 100 | 100 | 100 | 100 |
Province | PRO | CEA | CEL | Talmud | Piniles | Nash Bargaining (Homogenous Weights) | Nash Bargaining Heterogenous Weights (Based on the Length of Transmission Lines) | Nash Bargaining Heterogenous Weights (Based on the Population of the Province) |
---|---|---|---|---|---|---|---|---|
δi | 0.68 | 6.75 | 2.00 | 5.00 | 6.75 | 2.68 | 3.50 | 1.25 |
Rank | 1 | 7 | 3 | 6 | 7 | 4 | 5 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janjua, S.; Ali, M.U.; Kallu, K.D.; Ibrahim, M.M.; Zafar, A.; Kim, S. A Game-Theoretic Approach for Electric Power Distribution during Power Shortage: A Case Study in Pakistan. Appl. Sci. 2021, 11, 5084. https://doi.org/10.3390/app11115084
Janjua S, Ali MU, Kallu KD, Ibrahim MM, Zafar A, Kim S. A Game-Theoretic Approach for Electric Power Distribution during Power Shortage: A Case Study in Pakistan. Applied Sciences. 2021; 11(11):5084. https://doi.org/10.3390/app11115084
Chicago/Turabian StyleJanjua, Shahmir, Muhammad Umair Ali, Karam Dad Kallu, Malik Muhammad Ibrahim, Amad Zafar, and Sangil Kim. 2021. "A Game-Theoretic Approach for Electric Power Distribution during Power Shortage: A Case Study in Pakistan" Applied Sciences 11, no. 11: 5084. https://doi.org/10.3390/app11115084
APA StyleJanjua, S., Ali, M. U., Kallu, K. D., Ibrahim, M. M., Zafar, A., & Kim, S. (2021). A Game-Theoretic Approach for Electric Power Distribution during Power Shortage: A Case Study in Pakistan. Applied Sciences, 11(11), 5084. https://doi.org/10.3390/app11115084