Phase Change Material Integration in Building Envelopes in Different Building Types and Climates: Modeling the Benefits of Active and Passive Strategies
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Active Strategies: Energy Demand Reduction
3.2. Passive Strategies: Thermal Discomfort Reduction
4. Discussion
- significant overall benefits in the active approach, thanks to an important reduction of cooling demand; moreover, in colder zones, further reductions in heating consumption lead to higher benefits;
- a significant reduction of cold discomfort in hot climates in the passive approach and a slight reduction of warm discomfort in cold climates; nevertheless, few increases of warm discomfort can be found in extremely cold climates (Reykjavik).
- On the other hand, the midrise apartment model has shown:
- primarily reductions of heating demand in the active approach, with slight improvements of cooling consumption only for hot climates; considering the overall trend, the hot climates register slightly higher benefits;
- benefits in the passive approach are related mainly to warm discomfort, with higher effectiveness in intermediate climatic zones; moreover, in cold climates, reductions of cold discomfort have been registered, with a single case of increased cold discomfort in Bergen.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aelenei, D.; Aelenei, L.; Vieira, C.P. Adaptive Façade: Concept, Applications, Research Questions. Energy Procedia 2016, 91, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Fiorito, F.; Cannavale, A.; Santamouris, M. Development, testing and evaluation of energy savings potentials of photovoltachromic windows in office buildings. A perspective study for Australian climates. Sol. Energy 2020, 205, 358–371. [Google Scholar] [CrossRef]
- Loonen, R.C.G.M.; Favoino, F.; Hensen, J.L.M.; Overend, M. Review of current status, requirements and opportunities for building performance simulation of adaptive facades. J. Build. Perform. Simul. 2017, 10, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.O.; Medina, M.A.; Raith, E.; Sun, X. Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management. Appl. Energy 2015, 137, 699–706. [Google Scholar] [CrossRef]
- Akeiber, H.; Nejat, P.; Zaimi, M.; Majid, A.; Wahid, M.A.; Jomehzadeh, F.; Zeynali, I.; Kaiser, J.; Richard, B.; Ahmad, S. A review on phase change material ( PCM ) for sustainable passive cooling in building envelopes. Renew. Sustain. Energy Rev. 2016, 60, 1470–1497. [Google Scholar] [CrossRef]
- Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Tällberg, R.; Jelle, B.P.; Loonen, R.; Gao, T.; Hamdy, M. Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Sol. Energy Mater. Sol. Cells 2019, 200, 109828. [Google Scholar] [CrossRef] [Green Version]
- Cannavale, A.; Martellotta, F.; Cossari, P.; Gigli, G.; Ayr, U. Energy savings due to building integration of innovative solid-state electrochromic devices. Appl. Energy 2018, 225, 975–985. [Google Scholar] [CrossRef]
- Fiorito, F.; Sauchelli, M.; Arroyo, D.; Pesenti, M.; Imperadori, M.; Masera, G.; Ranzi, G. Shape morphing solar shadings: A review. Renew. Sustain. Energy Rev. 2016, 55, 863–884. [Google Scholar] [CrossRef] [Green Version]
- Barozzi, M.; Lienhard, J.; Zanelli, A.; Monticelli, C. The Sustainability of Adaptive Envelopes: Developments of Kinetic Architecture. Procedia Eng. 2016, 155, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Kim, D.; Kim, Y.; Kim, D.; Koh, J.S.; Kim, M.J. 3D-printed attachable kinetic shading device with alternate actuation: Use of shape-memory alloy (SMA) for climate-adaptive responsive architecture. Autom. Constr. 2020, 114, 103151. [Google Scholar] [CrossRef]
- Favoino, F.; Jin, Q.; Overend, M. Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework. Energy 2017, 127, 301–309. [Google Scholar] [CrossRef]
- Jin, Q.; Favoino, F.; Overend, M. Design and control optimisation of adaptive insulation systems for office buildings. Part 2: A parametric study for a temperate climate. Energy 2017, 127, 634–649. [Google Scholar] [CrossRef]
- Favoino, F.; Goia, F.; Perino, M.; Serra, V. Experimental assessment of the energy performance of an advanced responsive multifunctional façade module. Energy Build. 2014, 68, 647–659. [Google Scholar] [CrossRef]
- Favoino, F.; Goia, F.; Perino, M.; Serra, V. Experimental analysis of the energy performance of an ACTive, RESponsive and Solar (ACTRESS) façade module. Sol. Energy 2016, 133, 226–248. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.J. A review on phase change materials integrated in building walls. Renew. Sustain. Energy Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Elias, C.N.; Stathopoulos, V.N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia 2019, 161, 385–394. [Google Scholar] [CrossRef]
- Neri, G.; Koehler, A.; De Parolis, M.N.; Zolesi, V. ESA conditioned container: A system for passive temperature controlled transportation of experiments for the international space station. In Proceedings of the International Astronautical Congress, Naples, Italy, 1–5 October 2012. [Google Scholar]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 2013, 59, 82–103. [Google Scholar] [CrossRef]
- Manivel, R.; Muthukumaran, V.; Nekilesh, S.; Kandharooban, S. Design of thermal storage using phase change material (PCM) for agro products preservation. Int. J. Recent Technol. Eng. 2019, 8, 1669–1671. [Google Scholar] [CrossRef]
- Farzanehnia, A.; Khatibi, M.; Sardarabadi, M.; Passandideh-Fard, M. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers. Manag. 2019, 179, 314–325. [Google Scholar] [CrossRef]
- De Gracia, A.; Cabeza, L.F. Phase change materials and thermal energy storage for buildings. Energy Build. 2015, 103, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U.; Soudian, S. Benefits of latent thermal energy storage in the retrofit of Canadian high-rise residential buildings. Build. Simul. 2018, 11, 709–723. [Google Scholar] [CrossRef]
- Fiorito, F. Phase-change materials for indoor comfort improvement in lightweight buildings. A parametric analysis for Australian climates. Energy Procedia 2014, 57, 2014–2022. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, V.; Cannavale, A.; Martellotta, F.; Rinaldi, R.; Calcagnile, P.; Ferrari, F.; Ayr, U.; Fiorito, F. Nano-encapsulation of phase change materials: From design to thermal performance, simulations and toxicological assessment. Energy Build. 2019, 188–189, 1–11. [Google Scholar] [CrossRef]
- Kośny, J. PCM-Enhanced Building Components—An Application of Phase Change Materials in Building Envelopes and Internal Structures; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783319142852. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; De Gracia, A.; Fernández, A.I. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Kenisarin, M.M. Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol. Energy 2014, 107, 553–575. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, N.; Tao, W.; Cao, X.; He, Y. Fatty acids as phase change materials: A review. Renew. Sustain. Energy Rev. 2014, 29, 482–498. [Google Scholar] [CrossRef]
- Su, W.; Darkwa, J.; Kokogiannakis, G. Review of solid-liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev. 2015, 48, 373–391. [Google Scholar] [CrossRef]
- Milián, Y.E.; Gutiérrez, A.; Grágeda, M.; Ushak, S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew. Sustain. Energy Rev. 2017, 73, 983–999. [Google Scholar] [CrossRef]
- Salunkhe, P.B.; Shembekar, P.S. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew. Sustain. Energy Rev. 2012, 16, 5603–5616. [Google Scholar] [CrossRef]
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Navarro, L.; de Gracia, A.; Colclough, S.; Browne, M.; McCormack, S.J.; Griffiths, P.; Cabeza, L.F. Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems. Renew. Energy 2016, 88, 526–547. [Google Scholar] [CrossRef] [Green Version]
- Weinläder, H.; Körner, W.; Strieder, B. A ventilated cooling ceiling with integrated latent heat storage—Monitoring results. Energy Build. 2014, 82, 65–72. [Google Scholar] [CrossRef]
- Lizana, J.; de-Borja-Torrejon, M.; Barrios-Padura, A.; Auer, T.; Chacartegui, R. Passive cooling through phase change materials in buildings. A critical study of implementation alternatives. Appl. Energy 2019, 254. [Google Scholar] [CrossRef]
- Fiorentini, M.; Cooper, P.; Ma, Z. Development and optimization of an innovative HVAC system with integrated PVT and PCM thermal storage for a net-zero energy retrofitted house. Energy Build. 2015, 94, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Real, A.; García, V.; Domenech, L.; Renau, J.; Montés, N.; Sánchez, F. Improvement of a heat pump based HVAC system with PCM thermal storage for cold accumulation and heat dissipation. Energy Build. 2014, 83, 108–116. [Google Scholar] [CrossRef]
- de Gracia, A.; Navarro, L.; Castell, A.; Cabeza, L.F. Energy performance of a ventilated double skin facade with PCM under different climates. Energy Build. 2015, 91, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.K.A.; Al-Abidi, A.A.; Mat, S.; Sopian, K.; Ruslan, M.H.; Sulaiman, M.Y.; Rosli, M.A.M. Review of the application of phase change material for heating and domestic hot water systems. Renew. Sustain. Energy Rev. 2015, 42, 557–568. [Google Scholar] [CrossRef]
- Khan, M.M.A.; Ibrahim, N.I.; Mahbubul, I.M.; Ali, H.M.; Saidur, R.; Al-Sulaiman, F.A. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Sol. Energy 2018, 166, 334–350. [Google Scholar] [CrossRef]
- Navarro, L.; Barreneche, C.; Castell, A.; Redpath, D.A.G.; Griffiths, P.W.; Cabeza, L.F. High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. J. Energy Storage 2017, 13, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Najafian, A.; Haghighat, F.; Moreau, A. Integration of PCM in domestic hot water tanks: Optimization for shifting peak demand. Energy Build. 2015, 106, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B. Energy and cost saving of a photovoltaic-phase change materials (PV-PCM) System through temperature regulation and performance enhancement of photovoltaics. Energies 2014, 7, 1318–1331. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Liu, Z.; Flor, J.F.; Wu, Y.; Yang, M. Investigation on designed fins-enhanced phase change materials system for thermal management of a novel building integrated concentrating PV. Appl. Energy 2018, 225, 696–709. [Google Scholar] [CrossRef]
- Faheem, A.; Ranzi, G.; Fiorito, F.; Lei, C. A numerical study on the thermal performance of night ventilated hollow core slabs cast with micro-encapsulated PCM concrete. Energy Build. 2016, 127, 892–906. [Google Scholar] [CrossRef]
- Navarro, L.; de Gracia, A.; Niall, D.; Castell, A.; Browne, M.; McCormack, S.J.; Griffiths, P.; Cabeza, L.F. Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. Renew. Energy 2016, 85, 1334–1356. [Google Scholar] [CrossRef] [Green Version]
- Cabeza, L.F.; Castellón, C.; Nogués, M.; Medrano, M.; Leppers, R.; Zubillaga, O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007, 39, 113–119. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Wang, X.; Sanjayan, J.; Wilson, J. Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach. Appl. Energy 2017, 207, 654–664. [Google Scholar] [CrossRef]
- Kosny, J.; Kossecka, E.; Brzezinski, A.; Tleoubaev, A.; Yarbrough, D. Dynamic thermal performance analysis of fiber insulations containing bio-based phase change materials (PCMs). Energy Build. 2012, 52, 122–131. [Google Scholar] [CrossRef]
- Castellón, C.; Medrano, M.; Roca, J.; Cabeza, L.F.; Navarro, M.E.; Fernández, A.I.; Lázaro, A.; Zalba, B. Effect of microencapsulated phase change material in sandwich panels. Renew. Energy 2010, 35, 2370–2374. [Google Scholar] [CrossRef]
- Weinlaeder, H.; Koerner, W.; Heidenfelder, M. Monitoring results of an interior sun protection system with integrated latent heat storage. Energy Build. 2011, 43, 2468–2475. [Google Scholar] [CrossRef]
- Weinläder, H.; Beck, A.; Fricke, J. PCM-facade-panel for daylighting and room heating. Solar Energy 2005, 78, 177–186. [Google Scholar] [CrossRef]
- Barrenechea, C.; Navarro, H.; Serrano, S.; Cabeza, L.F.; Fernández, A.I. New database on phase change materials for thermal energy storage in buildings to help PCM selection. Energy Procedia 2014, 57, 2408–2415. [Google Scholar] [CrossRef] [Green Version]
- Heim, D.; Clarke, J.A. Numerical modelling and thermal simulation of PCM-gypsum composites with ESP-r. Energy Build. 2004, 36, 795–805. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G.; Lin, K.; Zhang, Q.; Di, H. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build. Environ. 2007, 42, 2197–2209. [Google Scholar] [CrossRef]
- US Department of Energy EnergyPlus Version 9.5 Documentation: Getting Started. EnergyplusTM. 2021. Available online: https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v9.5.0/GettingStarted.pdf (accessed on 17 May 2021).
- Favoino, F.; Giovannini, L.; Loonen, R. Smart glazing in Intelligent Buildings: What can we simulate? In Proceedings of the All eyes on glass: Conference proceedings of Glass Performance Days 2017, Tampere, Finland, 28–30 June 2017; pp. 8–15. [Google Scholar]
- Field, K.; Deru, M.; Studer, D. Using Doe Commercial Reference Buildings for Simulation Studies. In Proceedings of the SimBuild 2010 Fourth National Conference of IBPSA-USA, New York, NY, USA, 11–13 August 2010. [Google Scholar]
- Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; et al. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock; National Renewable Energy Laboratory: Golden, CO, USA, 2011. [Google Scholar]
- Economidou, M. Europe’s Buildings under the Microscope. A Country-by-Country Review of the Energy Performance of Buildings; Buildings Performance Institute Europe (BPIE): Brussel, Belgium, 2011; ISBN 9789491143014. [Google Scholar]
- US Department of Energy EnergyPlus Engineering Reference: The Reference to EnergyPlus Calculations. US Dep. Energy 2021. Available online: https://energyplus.net/documentation (accessed on 17 May 2021).
- ANSI/ASHRAE ASHRAE Guideline 14-2002 Measurement of Energy and Demand Savings; ASHRAE: Atlanta, GA, USA, 2002.
- ASHRAE. Guideline 14-2014: Measurement of Energy, Demand, and Water Savings; ASHRAE: Atlanta, GA, USA, 2014. [Google Scholar]
- Decreto Ministeriale del 26 giugno 2015—Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici. Gazz. Uff. Della Repubb. Ital. 2015. Attachment 1—Appendix A. Available online: https://www.gazzettaufficiale.it/eli/gu/2015/07/15/162/so/39/sg/pdf (accessed on 17 May 2021).
- Gagarin, V.G. Thermal performance as the main factor of energy saving of buildings in Russia. Procedia Eng. 2016, 146, 112–119. [Google Scholar] [CrossRef]
- Schettler-Kohler, H.-P.; Ahlke, I. EPBD implementation in Germany. Concert. Action Energy Perform. Build. 2019, 211–229. Available online: https://www.epbd-ca.eu/wp-content/uploads/2018/08/CA-EPBD-IV-Germany-2018.pdf (accessed on 17 May 2021).
- Danish Knolwledge Centre for Energy Savings in Buildings. Energy Requirements of BR18: A Quick Guide for the Construction Industry on the Danish Building Regulations 2018; Danish Knowledge Centre for Energy Savings in Buildings: Taastrup, 2018; Available online: https://byggeriogenergi.dk (accessed on 17 May 2021).
- Brekke, T.; Isachsen, O.K.; Strand, M. EPBD Implementation in Norway. Concert. Action Energy Perform. Build. 2019, 387–398. Available online: www.epbd-ca.eu (accessed on 17 May 2021).
- CEN EN 16798-1:2019—Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. 2019. Available online: https://www.cen.eu/news/brief-news/pages/en-2019-022.aspx (accessed on 17 May 2021).
- ANSI/ASHRAE/IES. Standard 90.1-2019—Energy Standard for Buildings Except Low-Rise Residential Buildings; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2019. [Google Scholar]
- Tabares-Velasco, P.C.; Christensen, C.; Bianchi, M. Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Build. Environ. 2012, 54, 186–196. [Google Scholar] [CrossRef]
- Zastawna-Rumin, A.; Kisilewicz, T.; Berardi, U. Novel Simulation Algorithm for Modeling the Hysteresis of Phase Change Materials. Energies 2020, 13, 1200. [Google Scholar] [CrossRef] [Green Version]
- Zwanzig, S.D.; Lian, Y.; Brehob, E.G. Numerical simulation of phase change material composite wallboard in a multi-layered building envelope. Energy Convers. Manag. 2013, 69, 27–40. [Google Scholar] [CrossRef] [Green Version]
Building Types | Number of Floors [–] | Gross Floor Area [m2] | Floor-to-Ceiling Height [m] | Windows-to-Wall Ratio [%] | Number of Thermal Zones [–] |
---|---|---|---|---|---|
Midrise apartment | 4 | 3134.59 | 3 | 20% | 32 |
Small office | 1 | 511.16 | 3 | 22% | 6 |
Building Types | Heating | Cooling | ||
---|---|---|---|---|
Average |MBE| [%] | Average CVRMSE [%] | Average |MBE| [%] | Average CVRMSE [%] | |
Midrise apartment | 4.9% | 9.3% | 5.7% | 12.9% |
Small office | 1.2% | 20.7% | 4.5% | 44.9% 1 |
City | Country | Köppen–Geiger Classification | CDD18° | HDD18° |
---|---|---|---|---|
Larnaca | Cyprus | BSh | 1259 | 759 |
Seville | Spain | Csa | 1063 | 916 |
Athens | Greece | Csa | 1076 | 1112 |
Brindisi | Italy | Csa | 834 | 1151 |
Santander | Spain | Cfb | 209 | 1369 |
Rome | Italy | Csa | 649 | 1444 |
Porto | Portugal | Csb | 146 | 1491 |
Madrid | Spain | Csa | 628 | 1965 |
Plovdiv | Bulgaria | Cfa | 543 | 2471 |
Milan | Italy | Cfa | 380 | 2639 |
Paris | France | Cfb | 142 | 2644 |
London | England | Cfb | 32 | 2866 |
Timisoara | Romania | Dfa | 365 | 2896 |
Brussels | Belgium | Cfb | 96 | 2912 |
Geneva | Switzerland | Dfb | 193 | 2965 |
Ankara | Turkey | BSk | 253 | 3307 |
Ljubljana | Slovenia | Dfc | 168 | 3383 |
Copenhagen | Denmark | Dfb | 29 | 3563 |
Prague | Czech Republic | Dfb | 84 | 3703 |
Munich | Germany | Dfb | 79 | 3738 |
Bergen | Norway | Cfb | 21 | 3996 |
Moscow | Russia | Dfb | 99 | 4655 |
Helsinki | Finland | Dfb | 33 | 4712 |
Reykjavik | Iceland | Dfc | 0 | 4917 |
Kiruna | Sweden | Dfc | 0 | 6967 |
Climatic Zone | City | Envelope Component | Thermal Transmittance [W/m2K] | Solar Heat Gain Coefficient [–] |
---|---|---|---|---|
B | Larnaca Seville | External wall | 0.43 | - |
Slab | 0.44 | - | ||
Roof | 0.35 | - | ||
Window | 3 | 0.35 | ||
C | Athens Brindisi Santander | External wall | 0.34 | - |
Slab | 0.38 | - | ||
Roof | 0.33 | - | ||
Window | 2.2 | 0.35 | ||
D | Rome Porto Madrid | External wall | 0.29 | - |
Slab | 0.29 | - | ||
Roof | 0.26 | - | ||
Window | 1.8 | 0.35 | ||
E | Plovdiv Milan Paris London Timisoara Brussels Geneva | External wall | 0.26 | - |
Slab | 0.26 | - | ||
Roof | 0.22 | - | ||
Window | 1.4 | 0.35 | ||
F | Ankara Ljubljana Copenhagen Prague Munich | External wall | 0.24 | - |
Slab | 0.20 | - | ||
Roof | 0.21 | - | ||
Window | 1.1 | 0.35 | ||
G | Bergen Moscow Helsinki Reykjavik Kiruna | External wall | 0.17 | - |
Slab | 0.10 | - | ||
Roof | 0.09 | - | ||
Window | 0.8 | 0.35 |
Technical Data | ||
---|---|---|
Density | ρ | 1000 kg/m3 |
Areal density | ρA | 25 kg/m2 |
Latent heat | dH | 300 kJ/m2 = 83 Wh/m2 |
Total storage capacity (10–30 °C) | - | 866 kJ/m2 |
Specific heat | c | 28.3 kJ/m2K |
Thermal conductivity | λ | 0.27 W/mK |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlucci, F.; Cannavale, A.; Triggiano, A.A.; Squicciarini, A.; Fiorito, F. Phase Change Material Integration in Building Envelopes in Different Building Types and Climates: Modeling the Benefits of Active and Passive Strategies. Appl. Sci. 2021, 11, 4680. https://doi.org/10.3390/app11104680
Carlucci F, Cannavale A, Triggiano AA, Squicciarini A, Fiorito F. Phase Change Material Integration in Building Envelopes in Different Building Types and Climates: Modeling the Benefits of Active and Passive Strategies. Applied Sciences. 2021; 11(10):4680. https://doi.org/10.3390/app11104680
Chicago/Turabian StyleCarlucci, Francesco, Alessandro Cannavale, Angela Alessia Triggiano, Amalia Squicciarini, and Francesco Fiorito. 2021. "Phase Change Material Integration in Building Envelopes in Different Building Types and Climates: Modeling the Benefits of Active and Passive Strategies" Applied Sciences 11, no. 10: 4680. https://doi.org/10.3390/app11104680
APA StyleCarlucci, F., Cannavale, A., Triggiano, A. A., Squicciarini, A., & Fiorito, F. (2021). Phase Change Material Integration in Building Envelopes in Different Building Types and Climates: Modeling the Benefits of Active and Passive Strategies. Applied Sciences, 11(10), 4680. https://doi.org/10.3390/app11104680