Atomic Vacancy Defect, Frenkel Defect and Transition Metals (Sc, V, Zr) Doping in Ti4N3 MXene Nanosheet: A First-Principles Investigation
Abstract
:1. Introduction
2. Calculation Method
3. Results and Discussion
3.1. Structure, Electronic Properties and Magnetism of Ti4N3 Nanosheet
3.2. Atomic Vacancy Effect of Ti4N3 Nanosheet
3.3. Frenkel-Type Defects in Ti4N3 Nanosheet
3.4. Doping Effects of Transition Metal Z (Z = Sc, V, Zr) on the Ti4N3 Nanosheet
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nanosci. Technol. 2009, 6, 11–19. [Google Scholar]
- Chae, H.K.; Siberio-Pérez, D.Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A.J.; O’keeffe, M.; Yaghi, O.M.; Materials, D.; Discovery, G. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature. 2004, 427, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Mayorov, A.S.; Gorbachev, R.V.; Morozov, S.V.; Britnell, L.; Jalil, R.; Ponomarenko, L.A.; Blake, P.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 2011, 11, 2396–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schadler, L.S.; Giannaris, S.C.; Ajayan, P.M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 1998, 73, 3842–3844. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321, 385. [Google Scholar] [CrossRef]
- Cai, W.; Zhu, Y.; Li, X.; Piner, R.D.; Ruoff, R.S. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 2009, 95, 123115. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.-Y.; Kim, T.; Cho, S.-H.; Chung, H.-J. A role for graphene in silicon-based semiconductor devices. Nature. 2011, 479, 338–344. [Google Scholar] [CrossRef]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, M.W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides; Wiley: New York, NY, USA, 2013; p. 1. [Google Scholar]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.C.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 2015, 9, 9507–9516. [Google Scholar] [CrossRef] [PubMed]
- Hong Ng, V.M.; Huang, H.; Zhou, K.; Lee, P.S.; Que, W.; Xu, Z.J.; Kong, L.B. Correction: Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A. 2017, 5, 8769. [Google Scholar] [CrossRef] [Green Version]
- Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P.L.; Zhao, M.; Shenoy, V.B.; Barsoum, M.W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391. [Google Scholar] [CrossRef]
- Zheng, W.; Sun, Z.M.; Zhou, P.G. Research Progress on MXene, Two Dimensional Nano-material. Mater. Rev. 2017, 31, 1–14. [Google Scholar]
- Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C. 2017, 5, 2488–2503. [Google Scholar] [CrossRef] [Green Version]
- Khazaei, M.; Ranjbar, A.; Ghorbani-Asl, M.; Arai, M.; Sasaki, T.; Liang, Y.; Yunoki, S. Nearly free electron states in MXenes. Phys. Rev. B. 2016, 93, 205125. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Zhou, K.; Srikanth, N.; Pang, J.H.L.; He, X.; Wang, R. Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Adv. 2016, 6, 35731–35739. [Google Scholar] [CrossRef]
- Yang, J.; Luo, X.; Zhang, S.; Chen, L. Investigation of magnetic and electronic properties of transition metal doped Sc2CT2 (T = O, OH or F) using a first principles study. Phys. Chem. Chem. Phys. 2016, 18, 12914–12919. [Google Scholar] [CrossRef]
- Gao, G.; Ding, G.; Li, J.; Yao, K.; Wu, M.; Qian, M. Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale. 2016, 8, 8986–8994. [Google Scholar] [CrossRef] [Green Version]
- Je, M.; Lee, Y.; Chung, Y.-C. Structural stability and electronic properties of multi-functionalized two-dimensional chromium carbides. Thin Solid Films 2016, 619, 131–136. [Google Scholar] [CrossRef]
- Si, C.; Zhou, J.; Sun, Z. Half-Metallic Ferromagnetism and Surface Functionalization-Induced Metal–Insulator Transition in Graphene-like Two-Dimensional Cr2C Crystals. ACS Appl. Mater. Interfaces 2015, 7, 17510–17515. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Lyu, P.; Nachtigall, P. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J. Mater. Chem. C 2016, 4, 11143–11149. [Google Scholar] [CrossRef]
- Kumar, S.; Schwingenschlögl, U. Thermoelectric performance of functionalized Sc2C MXenes. Phys. Rev. B 2016, 94, 35405. [Google Scholar] [CrossRef] [Green Version]
- Zha, X.-H.; Zhou, J.; Zhou, Y.; Huang, Q.; He, J.; Francisco, J.S.; Luo, K.; Du, S. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale 2016, 8, 6110–6117. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.-H.; Huang, Q.; He, J.; He, H.; Zhai, J.; Francisco, J.S.; Du, S. The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 2016, 6, 27971. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.-H.; Yin, J.; Zhou, Y.; Huang, Q.; Luo, K.; Lang, J.; Francisco, J.S.; He, J.; Du, S. Intrinsic Structural, Electrical, Thermal, and Mechanical Properties of the Promising Conductor Mo2C MXene. J. Phys. Chem. C 2016, 120, 15082–15088. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, J.; Ge, G.; Zhang, Y.; Jin, W.; Huang, W.; Shao, J.; Yang, J.; Dong, X. Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano 2018, 12, 56–62. [Google Scholar] [CrossRef]
- Gibertini, M.; Koperski, M.; Morpurgo, A.F.; Novoselov, K.S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191. [Google Scholar] [CrossRef]
- Cao, M.-S.; Shu, J.-C.; Wang, X.-X.; Wang, X.; Zhang, M.; Yang, H.-J.; Fang, X.-Y.; Yuan, J. Electronic Structure and Electromagnetic Properties for 2D Electromagnetic Functional Materials in Gigahertz Frequency. Ann. Phys. 2019, 531, 1800390. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Majumdar, K.; Liu, H.; Du, Y.; Wu, H.; Hatzistergos, M.; Hung, P.Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C.; et al. Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J.N.; Lotya, M.; O’neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science. 2011, 331, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazyev, O.V.; Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 2007, 75, 125408. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Das, T.; Nafday, D.; Boeri, L.; Saha-Dasgupta, T. Manipulating the mechanical properties of Ti2C MXene: Effect of substitutional doping. Phys. Rev. B 2017, 95, 184106. [Google Scholar] [CrossRef]
- Zhou, B.; Ji, S.; Tian, Z.; Cheng, W.; Wang, X.; Mi, W. Proximity effect induced spin filtering and gap opening in graphene by half-metallic monolayer Cr2C ferromagnet. Carbon 2018, 132, 25–31. [Google Scholar] [CrossRef]
- Wang, G. Theoretical Prediction of the Intrinsic Half-Metallicity in Surface-Oxygen-Passivated Cr2N MXene. J. Phys. Chem. C. 2016, 120, 18850–18857. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Luo, X.; Zhou, X.; Zhang, S.; Liu, J.; Xie, Y.; Lv, L.; Chen, L. Tuning magnetic properties of Cr2M2C3T2 (M=Ti and V) using extensile strain. Comput. Mater. Sci. 2017, 139, 313–319. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Ghosh, D.; Pati, S.K. Effects of point defects on the magnetoelectronic structures of MXenes from first principles. Phys. Chem. Chem. Phys. 2018, 20, 4012–4019. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawn, C.J.; Barsoum, M.W.; El-Raghy, T.; Procipio, A.; Hoffmann, C.M.; Hubbard, C.R. Structure of Ti4AlN3—a layered Mn+1AXn nitride. Mater. Res. Bull. 2000, 35, 1785–1796. [Google Scholar] [CrossRef]
- Shein, I.R.; Ivanovskii, A.L. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Comput. Mater. Sci. 2012, 65, 104–114. [Google Scholar] [CrossRef]
- Borysiuk, V.N.; Mochalin, V.N.; Gogotsi, Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology 2015, 26, 265705. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Kent, P.R.C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1 Xn (X= C, N) monolayers. Phys. Rev. B 2013, 87, 235441. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.Y.; Huang, H.S.; Wu, B. Vacancy and inverse defect effect of quaternary Heusler alloy CoFeTiSb. Mater. Rev. 2016, 30, 105–108; 114. [Google Scholar]
- Tao, J.; Jiao, Y.; Mo, Y.; Yang, Z.-H.; Zhu, J.-X.; Hyldgaard, P.; Perdew, J.P. First-principles study of the binding energy between nanostructures and its scaling with system size. Phys. Rev. B 2018, 97, 155143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Hong, Y.; Yazdanparast, S.; Asle Zaeem, M. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study. 2D Mater. 2018, 5, 45004. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.X.; Fan, X.B.; Li, S.Q. First-principles calculation of electromagnetic characteristics of 2-d GaN materials doped with alkali metals and alkaline earth metals. J. Phys. 2019, 68, 237303. [Google Scholar]
System | a (Å) | c (Å) | L (Å) | dTi1−N2 (Å) | dN2−Ti3 (Å) |
---|---|---|---|---|---|
Ti4AlN3[44] | 2.991 | 23.396 | 7.239 | 2.082 | 2.096 |
Ti4N3 | 2.993 | 23.439 | 7.235 | 2.062 | 2.119 |
System | a (Å) | L(Å) | dv−Ti1 (Å) | dv−N2 (Å) | dv−Ti3 (Å) | Eb (eV) | Eform (eV) | Mtot (µB) |
---|---|---|---|---|---|---|---|---|
Ti4N3 | 2.993 | 7.235 | 2.993(2.062) | 2.062(2.993) | 2.918(2.119) | −1.295 | - | 1.173 |
Ti4N3-Ti | 2.995 | 7.176 | 2.986 | 2.045 | 2.841 | −1.281 | 2.167 | 1.817 |
Ti4N3-N | 2.988 | 7.368 | 2.063 | 2.988 | 2.161 | −1.201 | 7.118 | 2.373 |
Atom | a (Å) | L (Å) | dZ-Ti1 (Å) | dZ-N2(Å) | Eb (eV) | Eform (eV) | MTi(µB) | MZ (µB) | Mtot (µB) |
---|---|---|---|---|---|---|---|---|---|
Ti4N3 | 2.993 | 7.235 | 2.919 | 2.062 | −1.295 | − | 0.490 | 0.389 | 1.173 |
Ti4N3-Sc | 2.999 | 7.217 | 3.029 | 2.217 | −1.280 | 0.930 | 0.594 | 0.356 | 1.649 |
Ti4N3-Zr | 2.999 | 7.211 | 3.090 | 2.220 | −1.220 | 4.715 | 0.522 | 0.294 | 1.772 |
Ti4N3-V | 2.991 | 7.241 | 2.802 | 1.985 | −1.335 | −2.505 | 0.668 | 1.315 | 2.365 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Zhao, W.; Yang, K.; Yao, Q.; Li, Y.; Wu, B.; Liu, J. Atomic Vacancy Defect, Frenkel Defect and Transition Metals (Sc, V, Zr) Doping in Ti4N3 MXene Nanosheet: A First-Principles Investigation. Appl. Sci. 2020, 10, 2450. https://doi.org/10.3390/app10072450
Zhou T, Zhao W, Yang K, Yao Q, Li Y, Wu B, Liu J. Atomic Vacancy Defect, Frenkel Defect and Transition Metals (Sc, V, Zr) Doping in Ti4N3 MXene Nanosheet: A First-Principles Investigation. Applied Sciences. 2020; 10(7):2450. https://doi.org/10.3390/app10072450
Chicago/Turabian StyleZhou, Tingyan, Wan Zhao, Kun Yang, Qian Yao, Yangjun Li, Bo Wu, and Jun Liu. 2020. "Atomic Vacancy Defect, Frenkel Defect and Transition Metals (Sc, V, Zr) Doping in Ti4N3 MXene Nanosheet: A First-Principles Investigation" Applied Sciences 10, no. 7: 2450. https://doi.org/10.3390/app10072450
APA StyleZhou, T., Zhao, W., Yang, K., Yao, Q., Li, Y., Wu, B., & Liu, J. (2020). Atomic Vacancy Defect, Frenkel Defect and Transition Metals (Sc, V, Zr) Doping in Ti4N3 MXene Nanosheet: A First-Principles Investigation. Applied Sciences, 10(7), 2450. https://doi.org/10.3390/app10072450