Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture
Abstract
1. Introduction
2. Literature Review
3. Deep Learning in Smart Agriculture
4. Proposed Solution
4.1. Deep Learning Services on Fog Nodes
4.2. Proposed DLEFN Algorithm
Algorithm 1 The pseudo code for new application addition of DLEFN |
1: /* input fog node ID and new application */ 2: Input: , 3: Output: accept 4: 5: init accept = false 6: 7: foreach in 8: for = to step 9: if then 10: accept = false 11: return accept 12: 13: else if then 14: = 15: = 16: = 17: accept = true 18: break 19: end if 20: end for 21: 22: if allow is false then 23: while is not empty 24: foreach in 25: requiredOverhead = 26: requiredBandwidth = 27: 28: if has smallest requiredOverhead among and > = then 29: = 30: = requiredOverhead 31: = requiredBandwidth 32: break 33: end if 34: end foreach 35: 36: if then 37: accept = false 38: return accept 39: 40: else if then 41: = 42: = 43: = 44: 45: accept = true 46: break 47: end if 48: end while 49: end if 50: end foreach 51: 52: return accept |
Algorithm 2 The pseudo code for application replacement of DLEFN |
1: /* input new application */ 2: Input: 3: Output: replace 4: 5: init replace = false 6: 7: foreach in 8: if is largest and > then 9: 10: foreach in 11: replace = implement Algorithm1(, ) 12: if replace is false then 13: break; 14: end if 15: end foreach 16: break 17: end if 18: end foreach 19: 20: return replace |
5. Performance Evaluation
5.1. Experimental Environment and Scenarios
5.2. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Ayaz, M.; Uddin, M.A.; Sharif, Z.; Mansour, A.; Aggoune, E.M. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Q.; Gao, J.; Li, W.; Lu, J. Urban Street Cleanliness Assessment Using Mobile Edge Computing and Deep Learning. IEEE Access 2019, 7, 63550–63563. [Google Scholar] [CrossRef]
- Narvaez, F.Y.; Reina, G.; Torres-Torriti, M.; Kantor, G.; Cheein, F.A. A Survey of Ranging and Imaging Techniques for Precision Agriculture Phenotyping. IEEE/ASME Trans. Mechatron. 2017, 22, 2428–2439. [Google Scholar] [CrossRef]
- Naseer, S.; Saleem, Y.; Khalid, S.; Bashir, M.K.; Han, J.; Iqbal, M.M.; Han, K. Enhanced Network Anomaly Detection Based on Deep Neural Networks. IEEE Access 2018, 6, 48231–48246. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE Access 2018, 6, 6900–6919. [Google Scholar] [CrossRef]
- Liu, J.; Chai, Y.; Xiang, Y.; Zhang, X.; Gou, S.; Liu, Y. Clean energy consumption of power systems towards smart agriculture: Roadmap, bottlenecks and technologies. CSEE J. Power Energy Syst. 2018, 4, 273–282. [Google Scholar] [CrossRef]
- Shiruru, K. An introduction to artificial neural network. Int. J. Adv. Res. Innov. Ideas Educ. 2016, 1, 27–30. [Google Scholar]
- Fadlullah, Z.M.; Tang, F.; Mao, B.; Kato, N.; Akashi, O.; Inoue, T.; Mizutani, K. State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Commun. Surv. Tutor. 2017, 19, 2432–2455. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Tang, F.; Hu, S.; Lin, Z.; Zhang, L. DANoC: An Efficient Algorithm and Hardware Codesign of Deep Neural Networks on Chip. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3176–3187. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Internet of Things: A Comprehensive Review of Enabling Technologies, Architecture, and Challenges. IETE Tech. Rev. 2017, 2, 205–220. [Google Scholar] [CrossRef]
- Lane, N.D.; Georgiev, P.; Qendro, L. Deepear: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments Using Deep Learning. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 283–294. [Google Scholar]
- Alsheikh, M.A.; Niyato, D.; Lin, S.; Tan, H.; Han, Z. Mobile Big Data Analytics Using Deep Learning and Apache Spark. IEEE Netw. 2016, 30, 22–29. [Google Scholar] [CrossRef]
- Gupta, H.; Dastjerdi, A.V.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. J. Softw. Pract. Exp. 2017, 47, 1275–1296. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V.; Yunsheng, M.; Chen, S.; Hou, P. A New Deep Learning-Based Food Recognition System for Dietary Assessment on An Edge Computing Service Infrastructure. IEEE Trans. Serv. Comput. 2018, 11, 249–261. [Google Scholar] [CrossRef]
- Lavassani, M.; Forsström, S.; Jennehag, U.; Zhang, T. Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT. Sensors 2018, 18, 1532. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018, 32, 96–101. [Google Scholar] [CrossRef]
- Pan, J.; McElhannon, J. Future Edge Cloud and Edge Computing for Internet of Things Applications. IEEE Internet Things J. 2018, 5, 439–449. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications. IEEE Access 2017, 5, 6757–6779. [Google Scholar] [CrossRef]
- Komar, M.; Yakobchuk, P.; Golovko, V.; Dorosh, V.; Sachenko, A. Deep Neural Network for Image Recognition Based on the Caffe Framework. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Silva, B.N.; Han, K. Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture. Appl. Sci. 2020, 10, 1544. https://doi.org/10.3390/app10041544
Lee K, Silva BN, Han K. Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture. Applied Sciences. 2020; 10(4):1544. https://doi.org/10.3390/app10041544
Chicago/Turabian StyleLee, Kyuchang, Bhagya Nathali Silva, and Kijun Han. 2020. "Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture" Applied Sciences 10, no. 4: 1544. https://doi.org/10.3390/app10041544
APA StyleLee, K., Silva, B. N., & Han, K. (2020). Deep Learning Entrusted to Fog Nodes (DLEFN) Based Smart Agriculture. Applied Sciences, 10(4), 1544. https://doi.org/10.3390/app10041544