Laser Irradiation Effects at Different Wavelengths on Phenology and Yield Components of Pretreated Maize Seed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Set-Up
2.3. UV–Visible Test
2.4. Field Experiment
2.5. Experimental Parameters
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Naggar, A.Y.; Shetaia, Y.M.; Youssef, K.A.; Ismail, N.A. Stimulation of the hydrocarbon compounds degrading Saccharomyces rosinii by low power laser radiation. Der Pharma Chem. 2012, 4, 1424–1434. [Google Scholar]
- Jia, Z.; Duan, J. Protecting effect of He-Ne laser on winter wheat from UV-B radiation damage by analyzing proteomic changes in leaves. Adv. Biosci. Biotechnol. 2013, 4, 823. [Google Scholar] [CrossRef] [Green Version]
- Aladjadjiyan, A. Physical factors for plant growth stimulation improve food quality. In Food production-approaches, challenges and tasks. Intech Croat. 2012, 270, 145–168. [Google Scholar]
- Hernandez, A.C.; Dominguez, P.A.; Cruz- Orea, A.; Ivanov, R.; Carballo, C.A.; Zepeda, B.R. Laser in agriculture (Review). Int. Agrophys. 2010, 24, 407–422. [Google Scholar]
- Reyes, M.C.P.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Martínez, E.M. The optical absorption coefficient of barley seeds investigated by photoacoustic spectroscopy and their effects by laser biostimulation. Int. J. Thermophys. 2015, 36, 2389–2400. [Google Scholar] [CrossRef]
- Vasilevski, G. Perspectives of the application of biophysical methods in sustainable agriculture. Bulg. J. Plant Physiol. 2003, 29, 179–186. [Google Scholar]
- Hasan, M.; Ismail, B.S. Effect of gibberellic acid on the growth and yield of groundnut (Arachis hypogaea L.). Sains. Malays. 2018, 47, 221–225. [Google Scholar]
- Tang, Z.; Yu, J.; Xie, J.; Lyu, J.; Feng, Z.; Dawuda, M.M.; Liao, W.; Wu, Y.; Hu, L. Physiological and Growth Response of Pepper (Capsicum annum L.) Seedlings to Supplementary Red/Blue Light Revealed through Transcriptomic Analysis. Agronomy 2019, 9, 139. [Google Scholar] [CrossRef] [Green Version]
- Jevtic, S.D.; Sreckovic, M.Z.; Pelemis, S.S.; Konstantinovic, L.M.; Jovanic, P.B.; Petrovic, L.D.; Dukic, M.M. Laser influence to bio-systems. Hem. Ind. 2015, 69, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Ćwintal, M.; Dziwulska-Hunek, A.; Wilczek, M. Laser stimulation effect of seeds on quality of alfalfa. Int. Agrophys. 2010, 24, 15–19. [Google Scholar]
- Maucieri, C.; Barco, A.; Borin, M. Compost as a Substitute for Mineral N Fertilization? Effects on Crops, Soil and N Leaching. Agronomy 2019, 9, 193. [Google Scholar] [CrossRef] [Green Version]
- Farivar, S.; Malekshahabi, T.; Shiari, R. Biological effects of low level laser therapy. J. Lasers Med. Sci. 2014, 5, 58–62. [Google Scholar] [PubMed]
- Smalley, P.J. Laser safety: Risks, hazards, and control measures. Laser Ther. 2011, 20, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M. Effect of rhizobium inoculation with phosphorus and nitrogen fertilizer on physico-chemical properties of the groundnut soil. Environ. Ecosyst. Sci. 2018, 2, 4–6. [Google Scholar] [CrossRef]
- Harun, S.N.; Mohd Hanafiah, M. Estimating the country-level water consumption footprint of selected crop production. Appl. Ecol. Env. Res. 2018, 16, 5381–5403. [Google Scholar] [CrossRef]
- Joshi, S.; Joshi, G.; Agrawal, H. Study on the effect of laser irradiation on wheat (Triticum aestivum L.) variety PBW-373 seeds on zinc uptake by wheat plants. J. Radioanal. Nucl. Chem. 2012, 294, 391–394. [Google Scholar] [CrossRef]
- Khalifa, N.S.; El Ghandoor, H. Investigate the effect of Nd-Yag laser beam on soybean (Glycin max) leaves at the protein level. Int. J. Biol. 2011, 3, 135. [Google Scholar] [CrossRef] [Green Version]
- Kouchebagh, S.B.; Farahvash, F.; Mirshekari, B.; Arbat, H.K.; Khoei, F.R. Seed priming techniques may improve grain and oil yields of sunflower (Helianthus annuus L.). J. Anim. Plant Sci. 2014, 24, 1863–1868. [Google Scholar]
- Li, J.; Guo, X.; Zhang, Y.; Ge, G.; Wang, Y.; Hou, Y.; Peng, J. Influence of He-Ne laser pretreatment on physiological characteristics in wheat seedlings under cadmium stress. Acta Bot. Boreali Occident. Sin. 2013, 33, 2474–2478. [Google Scholar]
- Maamoun, M.K.M.; El-Mahrouk, M.E.; Dewir, Y.H.; Omran, S.A. Effect of radiation and chemical mutagens on seeds germination of black cumin (Nigella sativa L). J. Agric. Technol. 2014, 10, 1183–1199. [Google Scholar]
- Jakubiak, M.; Gdowska, K. Innovative environmental technology applications of laser light stimulation. Енергеmuка I Aвтомаmuка 2013, 3, 14–21. [Google Scholar]
- Álvarez, A.; Ramírez, R.; Chávez, L.; Camejo, Y.; Pompa, R. Agricultural yield in tomato plants (Solanum lycopersicum L.), from seeds treated with low-power laser. Rev. Granma Cienc. 2013, 17, 1–8. [Google Scholar]
- Qiu, Z.; Li, J.; Zhang, M.; Bi, Z.; Li, Z. He–Ne laser pretreatment protects wheat seedlings against cadmium-induced oxidative stress. Ecotoxicol. Environ. Saf. 2013, 88, 135–141. [Google Scholar] [CrossRef]
- Muszyñski, S.; Gadyszewska, B. Representation of He-Ne laser irradiation effect on radish seeds with selected germination indices. Int. Agrophys. 2008, 22, 151–157. [Google Scholar]
- Podleśna, A.; Gładyszewska, B.; Podleśny, J.; Zgrajka, W. Changes in the germination process and growth of pea in effect of laser seed irradiation. Int. Agrophys. 2015, 29, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, M.; Koper, R.; Cwintal, M.; Kornillowicz-Kowalska, T. Germination capacity and the health status of red clover seeds following laser treatment. Int. Agrophys. 2004, 18, 289–294. [Google Scholar]
- Chen, Y.P.; Liu, Y.J.; Wang, X.L.; Ren, Z.Y.; Yue, M. Effect of microwave and He-Ne laser on enzyme activity and biophoton emission of isatis indigotica fort. J. Integr. Plant Biol. 2005, 47, 849–855. [Google Scholar] [CrossRef]
- Ćwintal, M.; Dziwulska-Hunek, A. Effect of electromagnetic stimulation of alfalfa seeds. Int. Agrophys. 2013, 27, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Podleśny, J.; Stochmal, A.; Podleśna, A.; Misiak, L.E. Effect of laser light treatment on some biochemical and physiological processes in seeds and seedlings of white lupine and faba bean. Plant Growth Regul. 2012, 67, 227–233. [Google Scholar]
- Wilczek, M.; Koper, R.; Cwintal, M.; Kornillowicz-Kowalska, T. Germination capacity and health status of hybrid alfalfa seeds after laser treatment. Int. Agrophys. 2005, 19, 257. [Google Scholar]
- Kannan, M.; Ismail, I.; Bunawan, H. Maize Dwarf Mosaic Virus: From Genome to Disease Management. Viruses 2018, 10, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juanssilfero, A.B.; Jahim, J.M.; Mutalib, F.A.A.; Zulkifli, W.Z.W.; Bakar, F.D.A.; Hassan, O. Characterization of copolymer Dehypon® LS 54 and its application for aqueous two-phase systems paired with the waxy maize starch for protein extraction. Int. J. Adv. Sci. Eng. Inf. Technol. 2011, 1, 65–71. [Google Scholar] [CrossRef]
- Aguilar, C.H.; Pacheco, F.A.D.; Orea, A.C.; Tsonchev, R.I. Thermal effects of laser irradiation on maize seeds. Int. Agrophys. 2015, 29, 147–156. [Google Scholar] [CrossRef]
- Metwally, S.A.; Abou-Ellail, M.; Abo-Leila, B.H.; Aboud, K.A. Effect of laser radiation on the growth, anatomical and biochemical genetic markers of celosia argentea plants. Int. J. Acad. Res. 2013, 5, 200–206. [Google Scholar] [CrossRef]
- Śliwka, M. Assessment of impact of coherent light on resistance of plants growing in unfavourable environmental conditions. Ecol. Eng. 2014, 15, 112–118. [Google Scholar]
- Rimal, B.; Ranaivoson, R.M.; Czarnecka, K.P.; Dobrowolski, J.W. Laser biotechnology for enhanced rooting and shooting of Salix viminalis in hydroponic condition for better adaptation in industrially contaminated land. Int. J. Environ. Bioremediat. Biodegrad. 2014, 2, 228–230. [Google Scholar]
- Hoseini, M.; Feqenabi, F.; Tajbakhsh, M.; Babazadeh-Igdir, H. Introduction of seed treatment techniques (seed priming). Int. J. Biosci. 2013, 3, 1–12. [Google Scholar]
- Elsahookie, M.M.; Wuhaib, K.M. Performance of clipped maize. J. Agron. Crop Sci. 1988, 160, 10–13. [Google Scholar] [CrossRef]
- Ashrafijou, M.; Noori, S.S.; Darbandi, A.I.; Saghafi, S. Effect of salinity and radiation on proline accumulation in seeds of canola (Brassica napus L.). Plant Soil Environ. 2010, 56, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Srećković, M.; Vasić, R.; Dukić, M.; Jevtić, S.; Jovanić, P. The influence of diode and He-Ne Lasers on corn and wheat seeds. J. Agric. Sci. Technol. B 2014, 4, 165–175. [Google Scholar]
- Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A. Thermal changes of maize seed by laser irradiation. Int. J. Thermophys. 2015, 36, 2401–2409. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M.C.J.; Martinez, E.M. The optical absorption coefficient of bean seeds investigated using photoacoustic spectroscopy. Int. J. Thermophys. 2015, 36, 835–843. [Google Scholar] [CrossRef]
- Abu-Elsaoud Abdelgaphafar, M.; Tuleukhanov, S.T. Can He-Ne laser induce changes in oxidative stress and antioxidant activities of wheat cultivars from Kasakhstan and Egypt? Sci. Int. 2013, 1, 39–50. [Google Scholar]
- Muthusamy, A.; Kudwa, P.P.; Prabhu, V.; Mahato, K.K.; Babu, V.S.; Rao, M.R.; Gopinath, P.M.; Satyamoorthy, K. Influence of Helium-Neon laser irradiation on seed germi-nation in vitro and physico-biochemical characters in seedlings of Brinjal (Solanum melongena L.) var. Mattu Gulla. Photochem. Photobiol. 2012, 88, 1227–1235. [Google Scholar] [CrossRef]
- Álvarez, A.; Ramírez, R.; Chávez, L.; Camejo, Y. Effect of the treatment of seeds with radiation laser of fall promotes in a hybrid of tomato (Solanum lycopersicum L.). Rev. Granma Cienc. 2011, 15, 1–9. [Google Scholar]
- Michtchenko, A.; Hernández, M. Photobiostimulation of germination and early growth of wheat seeds (Triticum aestivum L) by a 980 nm semiconductor laser. Rev. Cuba. Física 2010, 27, 271–274. [Google Scholar]
- Hernandez-Aguilar, C.; Liliana, R.P.C.; Arturo, D.P.F.; María, H.A.A.; Alfredo, C.O.; Aquiles, C.C. Laser light on the mycoflora content in maize seeds. Afr. J. Biotechnol. 2011, 10, 9280–9288. [Google Scholar]
- Abdullateef, R.A.; Osman, M. Effects of visible light wavelengths on seed germinability in Stevia rebaudiana Bertoni. Int. J. Biol. 2011, 3, 83. [Google Scholar]
- Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Ivanov, R.; Carballo-Carballo, A.; Zepeda-Bautista, R.; Galindo Soria, L. Laser irradiation effects on field performance of maize seed genotypes. Int. Agrophys. 2009, 23, 327–332. [Google Scholar]
- Mathews, M.A.; Pai, B.J.; Benedicenti, S. Effect of photobiomodulation on osseointegration and bone—A review. J. Laser Appl. 2015, 27, 012003. [Google Scholar] [CrossRef]
- Levskaya, A.; Weiner, O.D.; Lim, W.A.; Voigt, C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 2009, 461, 997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouly, J.P.; Schleicher, E.; Dionisio-Sese, M.; Vandenbussche, F.; Van Der Straeten, D.; Bakrim, N.; Ahmad, M. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J. Biol. Chem. 2007, 282, 9383–9391. [Google Scholar] [CrossRef] [Green Version]
- Jamil, Y.; Perveen, R.; Ashraf, M.; Ali, Q.; Iqbal, M.; Ahmad, M.R. He–Ne laser-induced changes in germination, thermodynamic parameters, internal energy, enzyme activities and physiological attributes of wheat during germination and early growth. Laser Phys. Lett. 2013, 10, 45–60. [Google Scholar] [CrossRef]
- Dobrowolski, J.W.; Śliwka, M.; Mazur, R. Laser biotechnology for more efficient bioremediation, protection of aquatic ecosystems and reclamation of contaminated areas. J. Chem. Technol. Biotechnol. 2012, 87, 1354–1359. [Google Scholar] [CrossRef]
- Rassam, Y.Z. The Effect of laser light on virulence factors and antibiotic susceptibility of locally isolated Pseudomonas aeruginosa. J. Appl. Sci. Res. 2010, 6, 1298–1302. [Google Scholar]
- Hernandez-Aguilar, C.; Cruz-Orea, A.; Ivanov, R.; Martínez, E.S.M.; Michtchenko, A. Photoacoustic spectroscopy applied to the study of the influence of laser irradiation on corn seeds. Int. J. Phys. IV (Proc.) 2005, 125, 853–855. [Google Scholar] [CrossRef]
- Hedimbi, M.; Singh, S. Laser induced fluorescence study on the growth of maize plants. Nat. Sci. 2012, 4, 395. [Google Scholar] [CrossRef] [Green Version]
- Samuilov, F.D.; Garifullina, R.L. Effect of laser irradiation on microviscosity of aqueous medium in imbibing maize seeds as studied with a spin probe method. Russ. J. Plant Physiol. 2007, 54, 128. [Google Scholar] [CrossRef]
- Hernandez-Aguilar, C.; Carballo, A.C.; Cruz-Orea, A.; Ivanov, R.; Domínguez-Pacheco, A. The carotenoid content in seedlings of maize seeds irradiated by a 650nm diode laser: Qualitative photoacoustic study. Eur. Phys. J. Spec. Top. 2008, 153, 515–518. [Google Scholar] [CrossRef]
- Asghar, T.; Jamil, Y.; Iqbal, M.; Abbas, M. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages. J. Photochem. Photobiol. B 2016, 165, 283–290. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
pH | 7.2 |
Electrical conductivity meq/100g soil | 3.8 |
Potassium (mg/L) | 1.6 |
Phosphorus (mg/kg soil) | 43.2 |
Silt (g/kg soil) | 28.9 |
Clay (g/kg soil) | 38.5 |
Sand (g/kg soil) | 32.6 |
Nitrate (%) | 0.0017 |
Ammonia nitrogen (%) | 0.009 |
Texture | Silty clay |
Treatments | No. of Row (ear) | Leaf Area (cm2) | Plant Height (cm) | Weight of 300 Seed (g) | Seed Yield (kg/ha) | Harvest Index (%) | Yield Efficiency (g/cm2) |
---|---|---|---|---|---|---|---|
Red laser | |||||||
L1T1S1 | 22.5 i,h | 435.0 i,j | 192 g–j | 53.21 a | 4744.57 k | 21.6 a | 12.02 l |
L1T1S2 | 28.5 g | 457.5 f,g | 197 e–h | 52.0 a | 5370.53 i–k | 21.3 a | 12.94 i–l |
L1T2S1 | 22.5 i,j | 397.5 m | 201 b–f | 54.0 a | 5724.33 f–i | 20.9 a | 15.87 a–d |
L1T2S2 | 34.5 d,e | 480.0 c,d | 204 b–d | 55.0 a | 5597.33 h–j | 22.4 a | 12.85 i–l |
L1T3S1 | 31.0 f | 472.5 d,e | 192 g–j | 51.0 a | 5787.83 e–i | 22.9 a | 13.09 i–l |
L1T3S2 | 34.5 d,e | 442.5 h,i | 196 f–i | 52.3 a | 4889.72 j,k | 22.1 a | 12.18 k,l |
L1T4S1 | 30.5 f,g | 412.5 l | 200 c–f | 52.9 a | 6323.07 a–g | 21.7 a | 16.9 a,b |
L1T4S2 | 21.5 j | 450.0 g,h | 207 a | 51.0 a | 6568.01 a–d | 22.3 a | 16.09 a–d |
Green laser | |||||||
L2T1S1 | 25.5 h | 465.0 e,f | 203 b–e | 54.2 a | 6368.43 a–f | 21.8 a | 15.1 b–h |
L2T1S2 | 29.0 f,g | 427.5 j,k | 199 c–f | 54.8 a | 6286.79 a–h | 20.2 a | 16.21 a–c |
L2T2S1 | 40.0 a | 442.5 h,i | 203 b–e | 53.2 a | 6885.53 a–c | 22.1 a | 16.86 a,b |
L2T2S2 | 37.5 b,c | 472.5 d,e | 189 i | 51.2 a | 5415.89 i–k | 20.7 a | 12.63 j–l |
L2T3S1 | 20.5 j | 472.5 d,e | 190 i,j | 53.1 a | 5660.8 f–i | 20.9 a | 13.21 i–l |
L2T3S2 | 30.0 f,g | 420.0 k,l | 202 b–f | 53.9 a | 6667.8 a–c | 21.7 a | 17.5 a |
L2T4S1 | 28.5 g | 495.0 b | 191 h–j | 51.7 a | 6205.1 c–h | 22.3 a | 13.82 f–l |
L2T4S2 | 26.0 h | 450.0 g,h | 205 a–c | 53.6 a | 5923.9 d–i | 22.2 a | 13.61 g–l |
Blue laser | |||||||
L3T1S1 | 30.5 f,g | 435.0 i,j | 198 d–g | 52.8 a | 5279.8 i–k | 21.8 a | 13.38 h–l |
L3T1S2 | 36.0 c–e | 442.5 h,i | 202 b–f | 53.3 a | 5615.4 g–i | 22 a | 13.99 e–k |
L3T2S1 | 24.0 h,i | 480.0 c,d | 197 e–h | 52.1 a | 5352..3 i–k | 23.1 a | 12.29 k,l |
L3T2S2 | 24.0 h,i | 457.5 f,g | 189.3 i,j | 53.4 a | 6468.2 a–e | 22.8 a | 15.58 b–f |
L3T3S1 | 39.1 a,b | 510.0 a | 211 a | 53.7 a | 7003.4 a | 23.6 a | 15.14 b–h |
L3T3S2 | 38.0 a–c | 517.5 a | 207 a | 55.3 a | 6939.9 a,b | 22.9 a | 14.38 d–j |
L3T4S1 | 29.5 f,g | 435.0 i,j | 200 c–f | 54.9 a | 6232.3 b–h | 21.9 a | 15.79 a–e |
L3T4S2 | 34.0 e | 450.0 g,h | 196 f–h | 51.5 a | 5833.1 e–i | 22.2 a | 15.33 b–g |
Control | 36.5 c,d | 487.5 b,c | 201 b–f | 52.7 a | 6259.5 b–h | 20.7 a | 14.51 c–i |
Interaction | |||||||
L | ** | ** | Ns | Ns | ** | Ns | Ns |
T | ** | ** | Ns | Ns | ** | Ns | ** |
S | ** | Ns | Ns | Ns | Ns | Ns | Ns |
L × T | ** | ** | ** | Ns | ** | Ns | ** |
L × S | Ns | ** | ** | Ns | Ns | Ns | Ns |
T × S | ** | ** | ** | Ns | Ns | Ns | ** |
L × T × S | ** | ** | ** | Ns | ** | Ns | ** |
Author | Wavelength (nm) | Intensity (mW/cm2) or Power (mW) | Times of Exposition | Finding |
---|---|---|---|---|
Srećković et al. [40] | 632.8 | 50 mW | 10 and 1000 s | Morphological changes in the plants with higher, thicker, and larger ears in the case of corn. |
Hernández-Aguilar et al. [47] | 655 | 4.6 mW/cm2 | 30, 60, 180, 300, and 600 s | Laser irradiation could be an alternative to control diseases in corn seeds. |
Hernández-Aguilar et al. [56] | 632.8 | 25 mW | 10 and 30 s | Irradiated seeds significantly increased crop yield in some variants. |
Hernández-Aguilar et al. [49] | 660 | 30 mW | 30, 60, 120, and 300 s | The experimental results indicated that there was bio-stimulation by the interaction of the laser light with the corn seed photoreceptors. |
Hedimbi and Singh [57] | 650 | 27.4 mW | 20 s | No significant bio-stimulation effects were found for A and B genotypes, and a negative bio-stimulation effect was found for genotype C. |
Samuilov and Garifullina [58] | 663 | 40 W | Every two hour | Decrease in the height, diameter of stem, and number of leaves in the plants exposed to laser with the increase in the time of exposure. |
Hernández-Aguilar et al. [59] | 632.8 | 50 mW | 0.60 s | Effect of laser irradiation on rotational correlation time expressed in seconds in seed endosperm was less pronounced but also led to an increase in probe mobility. |
Asghar et al. [60] | 650 | 3.04 mW/cm2 | 15, 30, 45, and 60 s | The experimental results showed that the interaction between the laser light and maize seeds affected the carotenoid content in the leaves of seedlings. |
Present study | 632.8, 532, 410 (combined) | 4 and 2 mW/cm2 | 45, 65, 85, and 105 s | The blue laser significantly increased the morphological parameters and yield component of maize. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.; Hanafiah, M.M.; Aeyad Taha, Z.; AlHilfy, I.H.H.; Said, M.N.M. Laser Irradiation Effects at Different Wavelengths on Phenology and Yield Components of Pretreated Maize Seed. Appl. Sci. 2020, 10, 1189. https://doi.org/10.3390/app10031189
Hasan M, Hanafiah MM, Aeyad Taha Z, AlHilfy IHH, Said MNM. Laser Irradiation Effects at Different Wavelengths on Phenology and Yield Components of Pretreated Maize Seed. Applied Sciences. 2020; 10(3):1189. https://doi.org/10.3390/app10031189
Chicago/Turabian StyleHasan, Mohammed, Marlia Mohd Hanafiah, Ziad Aeyad Taha, Intsar H. H. AlHilfy, and Mohd Nizam Mohd Said. 2020. "Laser Irradiation Effects at Different Wavelengths on Phenology and Yield Components of Pretreated Maize Seed" Applied Sciences 10, no. 3: 1189. https://doi.org/10.3390/app10031189
APA StyleHasan, M., Hanafiah, M. M., Aeyad Taha, Z., AlHilfy, I. H. H., & Said, M. N. M. (2020). Laser Irradiation Effects at Different Wavelengths on Phenology and Yield Components of Pretreated Maize Seed. Applied Sciences, 10(3), 1189. https://doi.org/10.3390/app10031189