Rodríguez-González, A.; Tuñas, J.M.; Prieto Santamaría, L.; Fernández Peces-Barba, D.; Menasalvas Ruiz, E.; Jaramillo, A.; Cotarelo, M.; Conejo Fernández, A.J.; Arce, A.; Gil, A.
Identifying Polarity in Tweets from an Imbalanced Dataset about Diseases and Vaccines Using a Meta-Model Based on Machine Learning Techniques. Appl. Sci. 2020, 10, 9019.
https://doi.org/10.3390/app10249019
AMA Style
Rodríguez-González A, Tuñas JM, Prieto Santamaría L, Fernández Peces-Barba D, Menasalvas Ruiz E, Jaramillo A, Cotarelo M, Conejo Fernández AJ, Arce A, Gil A.
Identifying Polarity in Tweets from an Imbalanced Dataset about Diseases and Vaccines Using a Meta-Model Based on Machine Learning Techniques. Applied Sciences. 2020; 10(24):9019.
https://doi.org/10.3390/app10249019
Chicago/Turabian Style
Rodríguez-González, Alejandro, Juan Manuel Tuñas, Lucia Prieto Santamaría, Diego Fernández Peces-Barba, Ernestina Menasalvas Ruiz, Almudena Jaramillo, Manuel Cotarelo, Antonio J. Conejo Fernández, Amalia Arce, and Angel Gil.
2020. "Identifying Polarity in Tweets from an Imbalanced Dataset about Diseases and Vaccines Using a Meta-Model Based on Machine Learning Techniques" Applied Sciences 10, no. 24: 9019.
https://doi.org/10.3390/app10249019
APA Style
Rodríguez-González, A., Tuñas, J. M., Prieto Santamaría, L., Fernández Peces-Barba, D., Menasalvas Ruiz, E., Jaramillo, A., Cotarelo, M., Conejo Fernández, A. J., Arce, A., & Gil, A.
(2020). Identifying Polarity in Tweets from an Imbalanced Dataset about Diseases and Vaccines Using a Meta-Model Based on Machine Learning Techniques. Applied Sciences, 10(24), 9019.
https://doi.org/10.3390/app10249019